期刊文献+
共找到667篇文章
< 1 2 34 >
每页显示 20 50 100
Molecule‑Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery
1
作者 Qiqi Sun Zelong Gong +13 位作者 Tao Zhang Jiafeng Li Xianli Zhu Ruixiao Zhu Lingxu Wang Leyuan Ma Xuehui Li Miaofa Yuan Zhiwei Zhang Luyuan Zhang Zhao Qian Longwei Yin Rajeev Ahuja Chengxiang Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期404-423,共20页
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int... The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode. 展开更多
关键词 Anchoring effect Nonflammable gel electrolyte In situ cross-linked Electrode-electrolyte interface Li metal battery
下载PDF
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
2
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte gel electrolyte Electrochemical stability window Li dendrite
下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
3
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies gel polymer electrolytes Lithium metal batteries
下载PDF
Simple electrode assembly engineering:Toward a multifunctional lead-acid battery
4
作者 Xiaojuan Cao Xiaoyu Yan +4 位作者 Kai Zhao Le Ke Xiaoyi Jiang Lingjiao Li Ning Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期536-543,共8页
Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-ef... Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-effectiveness and safety records.Despite of 165 years of development,the low energy density as well as the coupled power and energy density scaling restrain its wider application in real life.To address this challenge,we optimized the configuration of conventional Pb-acid battery to integrate two gas diffusion electrodes.The novel device can work as a Pb-air battery using ambient air,showing a peak power density of 183 mW cm^(−2),which was comparable with other state-of-the-art metal-O_(2)batteries.It can also behave as a fuel cell,simultaneously converting H_(2)and air into electricity with a peak power density of 75 mW cm^(−2).Importantly,this device showed little performance degradation after 35 h of the longevity test.Our work shows the exciting potential of lead battery technology and demonstrates the importance of battery architecture optimization toward improved energy storage capacity. 展开更多
关键词 lead-acid battery Decoupled electrode reaction Energy storage Discharge capacity Fuel cell
下载PDF
In Situ Polymer Gel Electrolyte in Boosting Scalable Fibre Lithium Battery Applications
5
作者 Jie Luo Qichong Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期170-173,共4页
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a... The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future. 展开更多
关键词 High-performance fibre lithium batteries gel electrolytes Channel structures Stable interface Scalable application
下载PDF
In Situ High-performance Gel Polymer Electrolyte with Dual-reactive Cross-linking for Lithium Metal Batteries
6
作者 Fuhe Wang Honghao Liu +6 位作者 Yaqing Guo Qigao Han Ping Lou Long Li Jianjie Jiang Shijie Cheng Yuancheng Cao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期51-59,共9页
Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium... Lithium metal batteries have been considered as one of the most promising next-generation power-support devices due to their high specific energy and output voltage.However,the uncontrollable side-reaction and lithium dendrite growth lead to the limited serving life and hinder the practical application of lithium metal batteries.Here,a tri-monomer copolymerized gel polymer electrolyte(TGPE)with a cross-linked reticulation structure was prepared by introducing a cross-linker(polyurethane group)into the acrylate-based in situ polymerization system.The soft segment of polyurethane in TGPE enables the far migration of lithium ions,and the-NH forms hydrogen bonds in the hard segment to build a stable cross-linked framework.This system hinders anion migration and leads to a high Li^(+)migration number(t_(Li^(+))=0.65),which achieves uniform lithium deposition and effectively inhibits lithium dendrite growth.As a result,the assembled symmetric cell shows robust reversibility over 5500 h at a current density of 1 mA cm^(-2).The LFP∷TGPE∷Li cell has a capacity retention of 89.8%after cycling 800 times at a rate of 1C.In summary,in situ polymerization of TGPE electrolytes is expected to be a candidate material for high-energy-density lithium metal batteries. 展开更多
关键词 gel polymer electrolytes hydrogen bonds in situ polymerization lithium metal batteries POLYURETHANE
下载PDF
Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium−iodine batteries
7
作者 Ying Jiang Peng Huang +5 位作者 Minman Tong Bingxin Qi Tao Sun Zhongyun Xian Wen Yan Chao Lai 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期234-247,共14页
Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-... Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries. 展开更多
关键词 electrode/electrolyte interface gel polymer electrolytes lithium dendrites lithium−iodine batteries polyiodide shuttle
下载PDF
Interfacial fusion-enhanced 11 μm-thick gel polymer electrolyte for high-performance lithium metal batteries
8
作者 Ying Jiang Xinyue Hong +3 位作者 Peng Huang Jing Shi Wen Yan Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期58-66,共9页
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei... In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries. 展开更多
关键词 Ultrathin gel polymer electrolyte Integrated electrode/electrolyte structure Quasi-solid-state lithium metal battery Solid-electrolyte interphase
下载PDF
Carboxylic bacterial cellulose fiber-based hydrogel electrolyte with imidazole-type ionic liquid for dendrite-free zinc metal batteries
9
作者 Tianyun Zhang Xiaohong Shi +4 位作者 Yu Li Sambasivam Sangaraju Fujuan Wang Liang Yang Fen Ran 《Materials Reports(Energy)》 EI 2024年第2期45-53,共9页
Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of... Aqueous zinc metal batteries are regarded as the most promising energy storage system due to their advantages of high safety,low cost,and high theoretical capacity.However,the growth of dendrites and the occurrence of side reactions hinder the development of zinc metal batteries.Despite previous attempts to design advanced hydrogel electrolytes,achieving high mechanical performance and ionic conductivity of hydrogel electrolytes has remained challenging.In this work,a hydrogel electrolyte with an ionic crosslinked network is prepared by carboxylic bacterial cellulose fiber and imidazole-type ionic liquid,following by a covalent network of polyacrylamide.The hydrogel electrolyte possesses a superior ionic conductivity of 43.76 mS cm^(−1),leading to a Zn^(2+)migration number of 0.45,and high mechanical performance with an elastic modulus of 3.48 GPa and an elongation at breaking of 38.36%.More importantly,under the anion-coordination effect of the carboxyl group in bacterial cellulose and[BF4]−in imidazole-type ionic liquid,the solvation sheath of hydrated Zn^(2+)ions and the nucleation overpotential of Zn plating are regulated.The results of cycled testing show that the growth of zinc dendrites is effectively inhibited and the generation of irreversible by-products is reduced.With the carboxylic bacterial cellulose-based hydrogel electrolyte,the Zn||Zn symmetric batteries offer good cyclability as well as Zn||Ti batteries. 展开更多
关键词 Bacterial cellulose fiber Ionic liquids Carboxylic group gel electrolyte Zn metal batteries
下载PDF
Recent advances in gel polymer electrolyte for high-performance lithium batteries 被引量:19
10
作者 Ming Zhu Jiaxin Wu +5 位作者 Yue Wang Mingming Song Lei Long Sajid Hussain Siyal Xiaoping Yang Gang Sui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期126-142,共17页
Lithium batteries (LBs) have become increasingly important energy storage systems in our daily life. However, their practical applications are still severely plagued by the safety issues from liquid electrolyte, espec... Lithium batteries (LBs) have become increasingly important energy storage systems in our daily life. However, their practical applications are still severely plagued by the safety issues from liquid electrolyte, especially when the batteries are exposed to mechanical, thermal, or electrical abuse conditions. Gel polymer electrolytes (GPEs) are being considered as an effective solution to replace currently available organic liquid electrolyte for building safer LBs. This review provides recent advancements in GPEs applied for high-performance LBs. On the one hand, from the environmental and economic point of view, the skeletons of GPEs changed from traditional polymer to renewable and degradable polymer. On the other hand, in addition to being as a component with good electrochemical and physical characterizations, the GPEs also need to provide some functions for addressing the concerns of lithium (Li) dendrites, unstable cathode electrolyte interface, dissolution and migration of transition metal ions,"shuttle effect" of polysulfides, and so on. Finally, to synchronously meet the challenges from the advanced cathode and Li metal anode, the bio-based GPEs with multi-functionality are proposed to develop high-energy/powerdensity batteries in the future. 展开更多
关键词 LITHIUM ion batteries gel polymer ELECTROLYTE SKELETON FUNCTIONALITY
下载PDF
Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery 被引量:9
11
作者 Man-Cheng Long Ting Wang +4 位作者 Ping-Hui Duan You Gao Xiu-Li Wang Gang Wu Yu-Zhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期9-18,共10页
Poly(ethylene oxide)(PEO)and its derivatives based gel polymer electrolytes(GPEs)are severely limited in advanced and safe lithium-ion batteries(LIBs)owing to the intrinsically high flammability of liquid electrolytes... Poly(ethylene oxide)(PEO)and its derivatives based gel polymer electrolytes(GPEs)are severely limited in advanced and safe lithium-ion batteries(LIBs)owing to the intrinsically high flammability of liquid electrolytes and PEO.Directly adding flame retardants to the GPEs can suppress their flammability and thus improve the safety of LIBs,but results in deteriorative electrochemical performance.Herein,a novel GPE with chemically bonded flame retardant(i.e.diethyl vinylphosphonate)in cross-linked polyethylene glycol diacrylate matrix,featuring both high-safety and high-performance,is designed.This as-prepared GPE storing the commercial 1 mol L^(-1) LiPF6 electrolyte resists high temperature of 200℃and cannot be ignited as well as possesses a high ionic conductivity(0.60 m S cm^(-1))and good compatibility with lithium.Notably,the LiFePO_(4)/Li battery with this GPE delivers a satisfactory capacity of 142.2 m A h g^(-1) and a superior cycling performance with a capacity retention of 96.3%and a coulombic efficiency of close to 100%for 350 cycles at 0.2 C under ambient temperature.Furthermore,the battery can achieve steady charge–discharge for 100 cycles with a coulombic efficiency of 99.5%at 1 C under 80℃and run normally even at a high temperature of 150℃or under the exposure to butane flame.Differential scanning calorimetry manifests significantly improved battery safety compared to commercial battery systems.This work provides a new pathway for developing next-generation advanced LIBs with enhanced performance and high safety. 展开更多
关键词 gel polymer electrolyte Poly(ethylene oxide) Flame retardant Vinylphosphonate Lithium-ion batteries
下载PDF
Research progress on gel polymer electrolytes for lithium-sulfur batteries 被引量:7
12
作者 Jie Qian Biyu Jin +3 位作者 Yuanyuan Li Xiaoli Zhan Yang Hou Qinghua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期420-437,共18页
Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced s... Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined. 展开更多
关键词 Lithium-sulfur batteries gel polymer electrolytes Solid hosts Liquid solutions
下载PDF
A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries 被引量:7
13
作者 Yan-Qiu Shen Fang-Lei Zeng +4 位作者 Xin-Yu Zhou An-bang Wang Wei-kun Wang Ning-Yi Yuan Jian-Ning Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期267-276,I0008,共11页
Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Her... Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Herein,an innovative gel polymer electrolyte(GPE)composed of polyvinylidene fluoride(PVDF)and organo-polysulfide polymer(PSPEG)is proposed,which could be used in semisolid-state Li-S batteries for protection of Li anodes.Particularly,organo-polysulfide polymer could chemically/electrochemically generate both inorganic and organic components simultaneously in-situ once contacting fresh Li metal surface and/or during discharging processes.And these inorganic/organic components could participate in the formation of the SEI layer and finally constitute a stable and flexible hybrid SEI layer on the surface of Li metal anode.Moreover,the organic components were permselective to lithium ions against anions.Therefore,PVDF/PSPEG GPE ensures the ideal chemical and electrochemical properties for Li-S batteries.Our work demonstrates an effective solution to solve the problems about Li anodes and contributes to the development of the safe Li metal batteries. 展开更多
关键词 gel polymer electrolyte Organo-polysulfides Lithium dendrite Solid electrolyte interphase Lithium-sulfur battery
下载PDF
Fibrous gel polymer electrolyte for an ultrastable and highly safe flexible lithium-ion battery in a wide temperature range 被引量:4
14
作者 Ke Li Wei Shen +8 位作者 Tao Xu Lu Yang Xiaobing Xu Feiyao Yang Lijuan Zhang Yangjian Wang Yaning Zhou Mengjuan Zhong Di Wei 《Carbon Energy》 SCIE CAS 2021年第6期916-928,共13页
Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at ... Replacement of flammable liquid electrolytes with gel polymer electrolytes(GPEs)is a promising route to improve the safety of lithium-ion batteries(LIBs).However,polymer-based electrolytes have limited suitability at low/high temperatures due to the instability of the polymer at high temperatures and the low ionic conductivity of the gel state at low temperatures.Herein,an integrated design of electrodes/fibrous GPEs modified with graphene oxide(GO)is reported.Due to the integrated structure of electrodes/GPEs,the strong interface affinity between electrodes and GPEs ensures that the GPEs spun on electrodes do not shrink at high temperatures(160-180℃),thus preventing a short circuit of electrodes.Moreover,after GO modification,oxygen-containing functional groups of GO can accelerate Li^(+)transport of GO-GPEs even at a low temperature of−15℃.When these GPEs are applied to flexible LIBs,the LIBs show excellent electrochemical performance,with satisfactory cycling stability of 82.9%at 1 C after 1000 cycles at 25℃.More importantly,at a high temperature of 160℃,the LIBs can also discharge normally and light the green light-emitting diode.Furthermore,at a low temperature of−15℃,92.7%of its room-temperature capacity can be obtained due to the accelerated Li^(+)transport caused by GO modification,demonstrating the great potential of this electrolyte and integrated structure for practical gel polymer LIB applications. 展开更多
关键词 flexible battery gel polymer electrolyte graphene oxide safe lithium-ion battery
下载PDF
Research on thin grid materials of lead-acid batteries 被引量:2
15
作者 WANG Erdong SHI Pengfei GAO Jun 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期43-46,共4页
A detailed investigation on Pb-Ca-Sn alloys was made in order to choose suitable grid alloys materials for thin plate lead-acid batteries. The electrochemical performances of alloys were investigated by electrochemica... A detailed investigation on Pb-Ca-Sn alloys was made in order to choose suitable grid alloys materials for thin plate lead-acid batteries. The electrochemical performances of alloys were investigated by electrochemical corrosion experiment, scanning electron microscope (SEM), and cyclic voltammetry (CV) test. The results indicate that Pb-Ca-Sn-Bi-Cu alloys can be used to make the grids used for thin grid lead-acid batteries, the content of bismuth has primary effects on the corrosion resistance of grid alloys, the composition of alloys plays an important role on batteries performance, and appropriate scale of elements can be choosed to obtain optimal electrochemical performance. The lead-acid batteries using this kind of grid show good performance by cycle life test. 展开更多
关键词 lead-acid batteries GRID ALLOYS CORROSION
下载PDF
A gel polymer electrolyte with IL@UiO-66-NH_(2) as fillers for high-performance all-solid-state lithium metal batteries 被引量:4
16
作者 Tao Wei Qi Zhang +7 位作者 Sijia Wang Mengting Wang Ye Liu Cheng Sun Yanyan Zhou Qing Huang Xiangyun Qiu Fang Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1897-1905,共9页
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ... All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries. 展开更多
关键词 all solid-state lithium-ion batteries metal-organic frameworks gel polymer electrolytes ionic liquid solid electrolyte interphase
下载PDF
A versatile nano-TiO_(2) decorated gel separator with derived multi-scale nanofibers towards dendrite-blocking and polysulfide-inhibiting lithium-metal batteries 被引量:3
17
作者 Huijuan Zhao jing Yan +2 位作者 Nanping Deng Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期190-201,共12页
In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluo... In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluorinated poly-m-phenyleneisophthalamide(PMIA)polymer solution.The prepared multiscale TiO_(2)-assisted gel separator presented relatively high porosity,small aperture,giving rise to superior affinity to electrolyte and sufficient active sites to accelerate lithium ions migration.Meanwhile,the asfabricated multifunctional GPE also rendered outstanding heat-resistance and well-distributed lithiumions flux,and the mutual overlaps between the coarse fibers and the fine fibers within the multi-scale nanofiber membrane provided a strong skeleton support,which in turn laid a solid footing stone for high-security and dendrite-proof batteries.Particularly,the nano-TiO_(2) particles within PMIA membrane acted as"gatekeepers",which can not only resist the growth of lithium dendrites,but also intercept the dissolved polysulfide on cathode side.Based on these merits,the gel PMIA-based lithium cobalt(LCO)/lithium battery obtained the remarkably improved rate capability and cycle performances on account of superior ionic conductivity,steady anodic stability window and weakened polarization behavior.Meanwhile,the resultant lithium-sulfur cell also delivered the outstanding cycling stability with the aid of the greatly prevented"shuttle effect"of dissolved lithium polysulfides based on the physical trapping and chemical binding of the prepared GPE to polysulfides species.This work proved that the addition of functional inorganic nanoparticles similar with TiO_(2) in multi-scale gel PMIA membrane can enhance the lithium ions transport capability,resist the growth of lithium dendrites as well as inhibit the shuttle effect of polysulfides,which would prompt a great development for dendrite-blocking and polysulfideinhibiting lithium-metal cells. 展开更多
关键词 Versatile gel polymer electrolyte Multi-scale nanofibers Thermostability Dendrite-blocking and polysulfide-inhibiting Lithium-metal batteries
下载PDF
Experiments Study on Charge Technology of Lead-Acid Electric Vehicle Batteries 被引量:2
18
作者 李雯 张承宁 《Journal of Beijing Institute of Technology》 EI CAS 2008年第2期159-163,共5页
The basic theory of the fast charge and several charge methods are introduced. In order to heighten charge efficiency of valve-regulated lead-acid battery and shorten the charge time, five charge methods are investiga... The basic theory of the fast charge and several charge methods are introduced. In order to heighten charge efficiency of valve-regulated lead-acid battery and shorten the charge time, five charge methods are investigated with experiments done on the Digatron BNT 400-050 test bench. Battery current, terminal voltage, capacity, energy and terminal pole temperature during battery experiment were recorded, and corresponding curves were depicted. Battery capacity-time ratio, energy efficiency and energy-temperature ratio are put forward to be the appraising criteria of lead-acid battery on electric vehicle (EV). According to the appraising criteria and the battery curves, multistage-current/negative-pulse charge method is recommended to charge lead-acid EV battery. 展开更多
关键词 electric vehicle (EV) lead-acid battery CHARGE appraising criteria
下载PDF
Molecular Reactivity and Interface Stability Modification in In-Situ Gel Electrolyte for High Performance Quasi-Solid-State Lithium Metal Batteries 被引量:2
19
作者 Qiyu Wang Xiangqun Xu +4 位作者 Bo Hong Maohui Bai Jie Li Zhian Zhang Yanqing Lai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期8-19,共12页
Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lit... Quasi-solid-state lithium metal battery is a promising candidate for next generation high energy density and high safety power supply.Despite intensive efforts on electrolytes,uncontrolled interfacial reactions on lithium with electrolyte and patchy interfacial contacts still hinder its practical process.Herein,we bring in rationally designed F contained groups into polymer skeleton via in-situ gelation for the first time to establish quasi-solid-state battery.This method achieves a capacity retention of 90%after 1000 cycles at 0.5C with LiFePO_(4)cathodes.The interface constructed by polymer skeleton and reaction with–CF_(3)lead to the predicted solid electrolyte interface species with high stability.Furthermore,we optimize molecular reactivity and interface stability with regulating F contained end groups in the polymer.Comparisons on different structures reveal that high performance solid stable lithium metal batteries rely on chemical modification as well as stable polymer skeleton,which is more critical to construct robust and steady SEI with uniform lithium deposition.New approach with functional groups regulation proposes a more stable cycling process with a capacity retention of 94.2%at 0.5C and 87.6%at 1C after 1000 cycles with LiFePO_(4) cathodes,providing new insights for the practical development of quasi-solid-state lithium metal battery. 展开更多
关键词 F contained end groups in-situ gel electrolyte interface stability molecular reactivity quasi-solid-state lithium metal battery
下载PDF
A lithiated gel polymer electrolyte with superior interfacial performance for safe and long-life lithium metal battery 被引量:1
20
作者 Jia-Jia Yuan Chuang-Chao Sun +6 位作者 Li-Feng Fang You-Zhi Song Yan Yan Ze-Lin Qiu Yu-Jie Shen Han-Ying Li Bao-Ku Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期313-322,共10页
Rechargeable lithium metal batteries(LMBs)have gained much attention recently.However,the short lifespan and safety issues restrict their commercial applications.Here we report a novel gel polymer electrolyte(GPE)base... Rechargeable lithium metal batteries(LMBs)have gained much attention recently.However,the short lifespan and safety issues restrict their commercial applications.Here we report a novel gel polymer electrolyte(GPE)based on lithiated poly(vinyl chloride-r-acrylic acid)(PVCAALi)to realize dendritesuppressing and long-term stable lithium metal cycling.PVC chains ensure the quick gelation process and high electrolyte uptake,and lithiated PAA segments enable the increase of mechanical strength,acceleration of lithium-ion transmission and improvement of interfacial compatibility.PVCAALi GPE showed much higher mechanical strength compared with other free-standing GPEs in previous works.It displays a superior ionic conductivity of 1.50 m S cm^(-1) and a high lithium-ion transference number of 0.59 at room temperature.Besides,the lithiated GPE exhibits excellent interfacial compatibility with lithium metal anodes.Lithium symmetrical cells with PVCAALi GPE yield low hysteresis of 50 m V over1000 h at 1.0 m A cm^(-2).And the possible mechanism of the lithiated GPE with improved lithium-ion transfer and interfacial property was discussed.Accordingly,both the Li4Ti5O12/Li and lithium-sulfur(Li-S)cells assembled with PVCAALi GPE show outstanding electrochemical performance,retaining high discharge capacities of 133.8 m Ah g^(-1) and 603.8 m Ah g^(-1) over 200 cycles,respectively.This work proves excellent application potential of the highly effective and low-cost PVCAALi GPE in safe and long-life LMBs. 展开更多
关键词 LITHIATION gel polymer electrolyte Lithium dendrite Safety Lithium metal battery
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部