By adopting a homemade extension apparatus and wide-angle X-ray diffraction(WAXD)technique,the structural evolutions of the extracted ultra-high molecular weight polyethylene(UHMWPE)fibers with different spinning draw...By adopting a homemade extension apparatus and wide-angle X-ray diffraction(WAXD)technique,the structural evolutions of the extracted ultra-high molecular weight polyethylene(UHMWPE)fibers with different spinning draw ratios were investigated during the poststretching process.Molecular chains oriented along the axis quickly at the early stage of drawing,which is quite different from the situation of drawing with solvents.The crystal regions,which have not melted at higher temperature,show stronger rigidity in the absence of solvents.Rigid characteristics show faster response to the external field.Also,the surface morphologies of fibers after poststretching are characterized by scanning electron microscopy(SEM).The lamellae stack disordered before stretching,but arranged in order along the draw direction when the draw ratios were larger than 1.展开更多
The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we re...The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we reported a novel method to assist the dissolving of UHMWPE in parafn oil without severe degradation in order to improve the tensile strength of resultant fbers.UHMWPE fbers with relatively high molecular weight and more excellent disentanglement efect were prepared by gel-spinning with UHMWPE suspension treated with supercritical carbon dioxide(SC-CO_(2)).The dynamic thermomechanical,mechanical and crystalline properties of UHMWPE extracted fbers and drawn fbers were researched comprehensively.UHMWPE extracted fbers obtained after SC-CO_(2) treatment display a higher molecular weight.More importantly,it is clear that the disentanglement of UHMWPE gel fbers gained by processing SC-CO_(2) has been signifcantly promoted compared with that without SC-CO_(2) treatment from dynamic thermomechanical and rheological results,which could also be demonstrated from the cross-sectional morphology of UHMWPE extracted fbers.Furthermore,the tensile strength of UHMWPE fbers prepared through SC-CO_(2) treating is able to attain 30.11 cN/dtex,increased by 10.3%in comparison to UHMWPE fbers gained without assistance of SC-CO_(2).Beyond that,the thermal behavior and crystallization performance of UHMWPE extracted fbers and drawn fbers acquired by way of SC-CO_(2) treatment have also been enhanced.展开更多
基金Founded by the PhD Foundation of Anhui Jianzhu University (2018QD59)the Natural Science Foundation of Anhui Ed ucation Department (Nos.KJ2021A0624,KJ2019JD18,and KJ2019A0774)+1 种基金the National Natural Science Foundation of China (Nos.51903002,51703218,and 51633009)the Anhui Provincial Science and Technology Major Projects (Nos.17030901101 and 201903a05020027)。
文摘By adopting a homemade extension apparatus and wide-angle X-ray diffraction(WAXD)technique,the structural evolutions of the extracted ultra-high molecular weight polyethylene(UHMWPE)fibers with different spinning draw ratios were investigated during the poststretching process.Molecular chains oriented along the axis quickly at the early stage of drawing,which is quite different from the situation of drawing with solvents.The crystal regions,which have not melted at higher temperature,show stronger rigidity in the absence of solvents.Rigid characteristics show faster response to the external field.Also,the surface morphologies of fibers after poststretching are characterized by scanning electron microscopy(SEM).The lamellae stack disordered before stretching,but arranged in order along the draw direction when the draw ratios were larger than 1.
基金This research is supported by Shanghai International S&T Cooperation Fund(No.16160731302).
文摘The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we reported a novel method to assist the dissolving of UHMWPE in parafn oil without severe degradation in order to improve the tensile strength of resultant fbers.UHMWPE fbers with relatively high molecular weight and more excellent disentanglement efect were prepared by gel-spinning with UHMWPE suspension treated with supercritical carbon dioxide(SC-CO_(2)).The dynamic thermomechanical,mechanical and crystalline properties of UHMWPE extracted fbers and drawn fbers were researched comprehensively.UHMWPE extracted fbers obtained after SC-CO_(2) treatment display a higher molecular weight.More importantly,it is clear that the disentanglement of UHMWPE gel fbers gained by processing SC-CO_(2) has been signifcantly promoted compared with that without SC-CO_(2) treatment from dynamic thermomechanical and rheological results,which could also be demonstrated from the cross-sectional morphology of UHMWPE extracted fbers.Furthermore,the tensile strength of UHMWPE fbers prepared through SC-CO_(2) treating is able to attain 30.11 cN/dtex,increased by 10.3%in comparison to UHMWPE fbers gained without assistance of SC-CO_(2).Beyond that,the thermal behavior and crystallization performance of UHMWPE extracted fbers and drawn fbers acquired by way of SC-CO_(2) treatment have also been enhanced.