期刊文献+
共找到493篇文章
< 1 2 25 >
每页显示 20 50 100
Two innovative equivalent statements of the third law of thermodynamics
1
作者 陈晓航 周颖慧 陈金灿 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期324-328,共5页
It is found from textbooks and literature that there are three different statements for the third law of thermodynamics,i.e., the Nernst theorem, the unattainability statement of absolute zero temperature, and the hea... It is found from textbooks and literature that there are three different statements for the third law of thermodynamics,i.e., the Nernst theorem, the unattainability statement of absolute zero temperature, and the heat capacity statement. It is pointed out that such three statements correspond to three thermodynamic parameters, which are, respectively, the entropy,temperature, and heat capacity, and can be obtained by extrapolating the experimental results of different parameters at ultralow temperatures to absolute zero. It is expounded that because there is no need for additional assumptions in the derivation of the Nernst equation, the Nernst theorem should be renamed as the Nernst statement. Moreover, it is proved that both the Nernst statement and the heat capacity statement are mutually deducible and equivalent, while the unattainability of absolute zero temperature is only a corollary of the Nernst statement or the heat capacity statement so that it is unsuitably referred to as one statement of the third law of thermodynamics. The conclusion is that the Nernst statement and the heat capacity statement are two equivalent statements of the third law of thermodynamics. 展开更多
关键词 Nernst statement heat capacity statement Nernst theorem absolute zero temperature the third law of thermodynamics
下载PDF
Confirmation of the First Law of Thermodynamics in Theory and Extended Bernoulli Equation
2
作者 Chengshu Jin 《Journal of Applied Mathematics and Physics》 2023年第2期409-420,共12页
The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal ener... The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation. 展开更多
关键词 First law of thermodynamics Chemical thermodynamics Bernoulli Equation Static Pressure Head FRICTION
下载PDF
Black Holes and the Third Law of Thermodynamics Revisited
3
作者 Miguel Socolovsky 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第2期499-505,共7页
Black holes contradict the Nernst-Planck (N/P) version of the 3rd law of thermodynamics, but agree with its unattainability (U) version. This happens without contradiction, because the N/P and U versions are not equiv... Black holes contradict the Nernst-Planck (N/P) version of the 3rd law of thermodynamics, but agree with its unattainability (U) version. This happens without contradiction, because the N/P and U versions are not equivalent, namely, N/P implies U but U does not imply N/P. So, black holes obey the weaker version of the 3rd law, but not the stronger one. 展开更多
关键词 thermodynamics Third law Black Holes
下载PDF
Energy and first law of thermodynamics for Born-Infeld-anti-de-Sitter black hole 被引量:1
4
作者 魏益焕 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期212-216,共5页
We calculate the local energy and the energy density of the Reisner-Norstrom-anti-de-Sitter black hole, study the first law of thermodynamics and show the Smarr formula for the Born-Infeld-anti-de-Sitter black hole. A... We calculate the local energy and the energy density of the Reisner-Norstrom-anti-de-Sitter black hole, study the first law of thermodynamics and show the Smarr formula for the Born-Infeld-anti-de-Sitter black hole. Applying the first law of thermodynamics to the black hole region, we analyse the three energy exchange processes between the black hole region and the outer and the inner regions. 展开更多
关键词 first law of thermodynamics energy distribution energy exchange
下载PDF
Effective first law of thermodynamics of black holes with two horizons
5
作者 魏益焕 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期821-824,共4页
For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Be... For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Bekenstein-Smarr formula and the effective first law of thermodynamics are derived. 展开更多
关键词 outer and inner horizons effective thermodynamic quantities first law of thermodynamics
下载PDF
Entropy Analysis of Vapor-Compression Refrigeration System by Using the Second Law of Thermodynamics
6
作者 杨洪海 《Journal of China Textile University(English Edition)》 EI CAS 1999年第4期42-44,共3页
By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-t... By means of the Second Law of Thermodynamics,thispaper gives out the entropy analysis method for vapor-comperession refrigeration system.The thermal irrevers-ibility of the system charged with R12 and its hopeful al-ternative refrlgerant R134a have been studied respective-ly.On the basis of all the research results of this paper,the measure used to save energy for vapor-compressionrefrigeration system has been put out. 展开更多
关键词 Vapor - Compression REFRIGERATION System Sec-ond law of thermodynamics ENTROPY ANALYSIS Alternative REFRIGERANT of CFC’s
下载PDF
Connection between the Principles of Thermodynamics and the Conservation Laws: Physical Meaning of the Principles of Thermodynamics
7
作者 L. I. Petrova 《Journal of Applied Mathematics and Physics》 2018年第12期2697-2704,共8页
It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodyna... It has been shown that the first principle of thermodynamics follows from the conservation laws for energy and linear momentum. And the second principle of thermodynamics follows from the first principle of thermodynamics under realization of the integrating factor (namely, temperature) and is a conservation law. The significance of the first principle of thermodynamics consists in the fact that it specifies the thermodynamic system state, which depends on interaction between conservation laws and is non-equilibrium due to a non-commutativity of conservation laws. The realization of the second principle of thermodynamics points to a transition of the thermodynamic system state into a locally-equilibrium state. Phase transitions are examples of such transitions. 展开更多
关键词 SKEW-SYMMETRIC Differential FORMS Conservation lawS First PRINCIPLE of thermodynamics Realization of Integrating Factor The Second PRINCIPLE of thermodynamics The Entropy
下载PDF
The Second Law of Thermodynamics in a Quantum Heat Engine Model
8
作者 ZHANG Ting CAI Li-Feng +1 位作者 CHEN Ping-Xing LI Cheng-Zu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期417-420,共4页
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum... The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model,nor greater than the reversible Carnot efficiency. 展开更多
关键词 second law of thermodynamics ENTROPY quantum heat engine
下载PDF
Effects of the porous medium and water-silver biological nanofluid on the performance of a newly designed heat sink by using first and second laws of thermodynamics
9
作者 Amin Shahsavar Sajad Entezari +1 位作者 Davood Toghraie Pouya Barnoon 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2928-2937,共10页
The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of... The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized water-silver nanofluid through a heat sink(HS)filled with porous foam(PHS)using first and second laws of thermodynamics.The impacts of inlet velocity(V=0.5–3 m·s^-1)and volume fraction of nanofluid(φ=0–1%)on the performance metrics of HS are assessed and the outcomes are compared with those of the non-porous HS(NHS).The outcomes revealed that for both the PHS and NHS,the increase of V causes an intensification in convection coefficient,pumping power,and entropy generation due to fluid friction,while the maximum CPU temperature,thermal resistance,and entropy generation due to the heat transfer reduces by boosting V.Also,it was found that the augmentation of V results in intensification in convection coefficient,pumping power,overall hydrothermal performance,and frictional entropy generation,while the opposite is true for maximum CPU temperature,thermal resistance,and thermal entropy generation.Furthermore,it was reported that,except forφ=0.5%,the overall hydrothermal performance of NHS is better than that of PHS,while PHS has better second-law performance than NHS in all the studied cases.Also,it can be concluded that the best hydrothermal performance for PHS belongs toφ=1%and V=0.5 m·s^-1,while for NHS,these values are 1%and 2 m·s^-1. 展开更多
关键词 Porous medium Heat sink First and second laws of thermodynamics Biologically prepared water-silver nanofluid
下载PDF
Representation of the Basic Laws of Thermodynamics in Quantum Mechanics
10
作者 Akira Suzuki Hisao Taira 《Journal of Modern Physics》 2018年第14期2420-2436,共17页
We propose a representation of the basic laws, namely the zeroth, first, second and third law, in quantum thermodynamics. The zeroth law is represented by some parameters () that specify respective quantum states. The... We propose a representation of the basic laws, namely the zeroth, first, second and third law, in quantum thermodynamics. The zeroth law is represented by some parameters () that specify respective quantum states. The parameters are the elements of thermodynamic state space. The introduction of such parameters is based on a probabilistic nature of quantum theory. A quantum analog of the first law can be established by utilizing these parameters. The notion of heat in quantum systems is clarified from the probabilistic point of view in quantum theory. The representation of the second law can be naturally described in terms of these parameters introduced for the respective quantum systems. In obtaining the representation of quantum thermodynamics, consistency between quantum theory and classical thermodynamics should have been preserved throughout our formulation of quantum thermodynamics. After establishing the representation of the second law, the third law is discussed briefly. The relationship between thermodynamic temperatures and the parameters in is also discussed. 展开更多
关键词 Basic lawS of thermodynamics thermodynamIC State Space Probabilistic Nature of Quantum Theory Notion of Heat Entropy Principle ADIABATIC ACCESSIBILITY
下载PDF
Applying the Stefan-Boltzmann Law to a Cosmological Model (a Brief Note)
11
作者 Eugene Terry Tatum 《Journal of Modern Physics》 2024年第11期1717-1722,共6页
This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is em... This brief note brings the reader up-to-date with the recent successes of the new Haug-Tatum cosmology model. In particular, the significance of recent proof that the Stefan-Boltzmann law applies to such a model is emphasized and a rationale for this is given. Remarkably, the proposed solutions of this model have incorporated all 580 supernova redshifts in the Union2 database. Therefore, one can usefully apply this thermodynamic law in the form of a continually expanding black-body universe model. To our knowledge, no other cosmological model has achieved such high-precision observational correlation. 展开更多
关键词 Haug-Tatum Cosmology Stefan-Boltzmann law Flat Space Cosmology CMB Cosmic thermodynamics Rh = ct Cosmology Model Black Body
下载PDF
Living Matter and the Laws of Thermodynamics for the Biosphere
12
作者 Nabil H.Swedan 《Journal of Geological Research》 2019年第2期35-40,共6页
The laws of thermodynamics have been developed for inert matter,and living matter has not been considered as a variable in these laws.Living matter possesses properties that have had major effects on biosphere evoluti... The laws of thermodynamics have been developed for inert matter,and living matter has not been considered as a variable in these laws.Living matter possesses properties that have had major effects on biosphere evolution with time.The zeroth property is“Living matter is produced from living matter only.”The first property may be summarized as“Living matter occupies the available spaces to the maximum extent when environmental conditions are favorable and no obstacles are present.”And the second property is“Living matter mutates,changes,and adapts to maintain the continuity of life and size as large as possible when environmental conditions are unfavorable.”While the zeroth property is objective in nature,the first and second properties are subjective,in that they are driven by internal stimuli characterizing living matter.Their interaction with the laws of thermodynamics may be thought of as“philosophy intertwining with science.”Accordingly,the laws of thermodynamics are revised to factor in life as a variable.Mathematical expressions of the first and second laws are derived and some of their applicability to the biosphere and climate is explained and discussed.The main conclusion is that life changes climates and the fabric of the biosphere. 展开更多
关键词 laws of thermodynamics BIOSPHERE PHOTOSYNTHESIS Past climates Surface geology
下载PDF
Motoyosi Sugita—A “Widely Unknown” Japanese Thermodynamicist Who Explored the 4th Law of Thermodynamics for Creation of the Theory of Life
13
作者 Kazumoto Iguchi 《Open Journal of Biophysics》 2016年第4期125-232,共109页
The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena a... The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan. 展开更多
关键词 Unknown Japanese thermodynamicist Motoyosi Sugita thermodynamics of Transient Phenomena Virtual Heat Broad Quasi-Static Change Chemical Potential Field of Chemical Potential Diffusion Phenomena Number of Partition Dissipation Function Onsager’s Theory of Irreversible Processes Prigogine’s Least Production of Entropy 4th law of thermodynamics Maximum Principle Pontryagin’s Maximum Principle Bellman’s Optimality Principle Theory of Metabolism Theory of Life CYBERNETICS
下载PDF
The Application of the Generalized Differential Formulation of the First Law of Thermodynamics for Evidence of the Tidal Mechanism of Maintenance of the Energy and Viscous-Thermal Dissipative Turbulent Structure of the Mesoscale Oceanic Eddies
14
作者 Sergey V.Simonenko Vyacheslav B.Lobanov 《Journal of Modern Physics》 2018年第3期357-386,共30页
The practical significance of the established generalized differential formula-tion of the first law of thermodynamics (formulated for the rotational coor-dinate system) is evaluated (for the first time and for the me... The practical significance of the established generalized differential formula-tion of the first law of thermodynamics (formulated for the rotational coor-dinate system) is evaluated (for the first time and for the mesoscale oceanic eddies) by deriving the general (viscous-compressible-thermal) and partial (incompressible, viscous-thermal) local conditions of the tidal maintenance of the quasi-stationary energy and dissipative turbulent structure of the mesoscale eddy located inside of the individual fluid region of the ther-mally heterogeneous viscous (compressible and incompressible, respective-ly) heat-conducting stratified fluid over the two-dimensional bottom topog-raphy characterized by the horizontal coordinate x along a horizon-tal axis X. Based on the derived partial (incompressible) local condition (of the tidal maintenance of the quasi-stationary energy and viscous-thermal dis-sipative turbulent structure of the mesoscale eddy) and using the calculated vertical distributions of the mean viscous dissipation rate per unit mass and the mean thermal dissipation rate per unit mass in four regions near the observed mesoscale (periodically topographically trapped by nearly two-dimensional bottom topography h(x) eddy located near the northern region of the Yamato Rise in the Japan Sea, the combined analysis of the energy structure of the eddy and the viscous-thermal dissipative structure of turbulence is presented. The convincing evidence is presented of the tidal mechanism of maintenance of the eddy energy and viscous-thermal dissipa-tive structure of turbulence (produced by the breaking internal gravity waves generated by the eddy) in three regions near the Yamato Rise subjected to the observed mesoscale eddy near the northern region of the Yamato Rise of the Japan Sea. 展开更多
关键词 Generalized Formulation of the First law of thermodynamics Cosmic GRAVITATION Small-Scale DISSIPATIVE Turbulence VISCOUS and THERMAL Dissipation Rates MESOSCALE Oceanic EDDIES Internal Tide
下载PDF
A Fundamental Equation of Thermodynamics that Embraces Electrical and Magnetic Potentials 被引量:2
15
作者 Salama Abdel- Hady 《Journal of Electromagnetic Analysis and Applications》 2010年第3期162-168,共7页
This paper introduces an energy-analysis of the flow of electrical charges and magnetic flux in addition to the flow of heat into a thermodynamic system. The analysis depends on the results of a held experiment on a m... This paper introduces an energy-analysis of the flow of electrical charges and magnetic flux in addition to the flow of heat into a thermodynamic system. The analysis depends on the results of a held experiment on a magnet that attracted iron balls and a Faraday’s discovery as well as similarities between the laws characterizing the flow of electric charges, magnetic flux and heat. As the electric charge and magnetic flux produce entropy changes in some applications as magnetic hysteresis and capacitive deionization, we may express the electric charges and magnetic flux in terms of entropy changes times their corresponding potentials by analogy to expressing heat as a product of temperature and entropy changes. Introducing such postulates into the held energy-analysis;a new fundamental equation of thermodynamics that embraces the flow of electric charges and magnetic flux in terms of the electric and magnetic potentials was derived. The derived equation proved its truth in numerous studies of general energy interactions. Such postulates help also in defining the electric charge and magnetic flux as categories of electromagnetic waves of assigned electric or magnetic potentials and offer plausible explanations of newly discovered phenomena in the fields of electromagnetism and thermodynamics as Kerr effect and magnetic expansion. 展开更多
关键词 First and Second lawS of thermodynamics Electromagnetic WAVES Heat FLUX Electric CHARGE Magnetic FLUX
下载PDF
Changes in Tropical Cyclone Number in the Western North Pacific in a Warming Environment as Implied by Classical Thermodynamics 被引量:1
16
作者 Xiaogang Zhou Chongjian Liu +2 位作者 Ying Liu Hui Xu Xiuming Wang 《International Journal of Geosciences》 2011年第1期29-35,共7页
Observational analyses show that the equatorial trough in the western North Pacific (WNP) is a well-known origin for tropical cyclones (TC) which have tended to weaken in intensity and decrease in number during the la... Observational analyses show that the equatorial trough in the western North Pacific (WNP) is a well-known origin for tropical cyclones (TC) which have tended to weaken in intensity and decrease in number during the last several decades under global warming. A scientific problem then arises as to why higher sea surface temperatures (SSTs), one of the necessary conditions for typhoon genesis, can cause a weakened equatorial trough and a decreased TC number. In this paper, the WNP is taken as an example to illustrate a possible mechanism for the above-mentioned seemingly counterintuitive phenomena and explain the causality between the unusually heterogeneous pattern of SSTs in a warming environment and TC number in the WNP. This mechanism is based substantially on the second law of thermodynamics. 展开更多
关键词 SECOND law of thermodynamics Global WARMING Thermal Wind Relation Sea Surface Temperature
下载PDF
Quantum Physics Can Be Understood in Terms of Classical Thermodynamics 被引量:2
17
作者 Tomofumi Miyashita 《Journal of Modern Physics》 2011年第1期26-29,共4页
Quantum physics can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the area of soli... Quantum physics can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the area of solid-oxide fuel cells (SOFCs). The use of samarium-doped ceria (SDC) electrolytes in SOFCs lowers the open-circuit voltage (OCV) below the Nernst voltage (Vth). The low OCV is calculated with Wagner’s equation, included in the Nernst-Planck equation, which is based on the first and second thermodynamic laws. Experimental and theoretical limitations of Wagner’s equation have been discovered. Considering the separation of the Boltzmann distribution and Maxwell’s Demon, only carrier species having sufficient energy to overcome the activation energy can contribute to current conduction, as determined by incorporating different constants in the definitions of the chemical and electrical potentials. This means that an additional thermodynamic law is needed. Furthermore, quantum physics can be explained by the additional thermodynamic law. 展开更多
关键词 BOLTZMANN Distribution Maxwell’s DEMON Wagner EQUATION NERNST-PLANCK EQUATION Additional thermodynamIC law
下载PDF
Bell’s Non-Locality Theorem Can Be Understood in Terms of Classical Thermodynamics 被引量:1
18
作者 Tomofumi Miyashita 《Journal of Modern Physics》 2017年第1期87-98,共12页
Bell’s non-locality theorem can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the... Bell’s non-locality theorem can be understood in terms of classical thermodynamics, which is already considered to be a complete field. However, inconsistencies in classical thermodynamics have been discovered in the area of solid-oxide fuel cells (SOFCs). The use of samarium-doped ceria electrolytes in SOFCs lowers the open-circuit voltage (OCV) to less than the Nernst voltage. This low OCV has been explained by Wagner’s equation, which is based on chemical equilibrium theory. However, Wagner’s equation is insufficient to explain the low OCV, which should be explained by fluctuation and dissipation theorems. Considering the separation of the Boltzmann distribution and Maxwell’s demon, only carrier species with sufficient energy to overcome the activation energy can contribute to current conduction, as determined by incorporating different constants into the definitions of the chemical and electrical potentials. Then, an energy loss equal to the activation energy will occur because of the interactions between ions and electrons. This energy loss means that an additional thermodynamic law based on an advanced model of Maxwell’s demon is needed. In this report, the zero-point energy can be explained by this additional ther-modynamic law, as can Bell’s non-locality theorem. 展开更多
关键词 Wagner’s Equation FLUCTUATION and DISSIPATION Theory BOLTZMANN Distribution Maxwell’s DEMON Additional thermodynamIC law
下载PDF
COMPUTER SIMULATION OF POLYMER SOLUTION THERMODYNAMICS
19
作者 赵得禄 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1998年第2期97-105,共9页
The statistical counting method for the computer simulation of the thermodynamic quantities of polymer solution has been reviewed. The calculating results for a single athermal chain confirm the theory of the renorma... The statistical counting method for the computer simulation of the thermodynamic quantities of polymer solution has been reviewed. The calculating results for a single athermal chain confirm the theory of the renormalization group. The results for the athermal solution are consistent with the scaling law of the osmotic pressure with the exponent 2.25. The results for a single chain with the segmental interaction are in a good agreement with the exact results obtained by the direct counting method. The results for the polymer solution show us that the Flory-Huggins parameter is strongly dependent on both the polymer concentration and the interaction energy between segments. (Author abstract) 15 Refs. 展开更多
关键词 Monte Carlo simulation polymer solution thermodynamic quantities translational entropy conformational entropy scaling law
下载PDF
Coherent Application of a Contact Structure to Formulate Classical Non-Equilibrium Thermodynamics
20
作者 Edwin Knobbe Dirk Roekaerts 《Modern Mechanical Engineering》 2017年第1期8-26,共19页
This contribution presents an outline of a new mathematical formulation for Classical Non-Equilibrium Thermodynamics (CNET) based on a contact structure in differential geometry. First a non-equilibrium state space is... This contribution presents an outline of a new mathematical formulation for Classical Non-Equilibrium Thermodynamics (CNET) based on a contact structure in differential geometry. First a non-equilibrium state space is introduced as the third key element besides the first and second law of thermodynamics. This state space provides the mathematical structure to generalize the Gibbs fundamental relation to non-equilibrium thermodynamics. A unique formulation for the second law of thermodynamics is postulated and it showed how the complying concept for non-equilibrium entropy is retrieved. The foundation of this formulation is a physical quantity, which is in non-equilibrium thermodynamics nowhere equal to zero. This is another perspective compared to the inequality, which is used in most other formulations in the literature. Based on this mathematical framework, it is proven that the thermodynamic potential is defined by the Gibbs free energy. The set of conjugated coordinates in the mathematical structure for the Gibbs fundamental relation will be identified for single component, closed systems. Only in the final section of this contribution will the equilibrium constraint be introduced and applied to obtain some familiar formulations for classical (equilibrium) thermodynamics. 展开更多
关键词 NON-EQUILIBRIUM thermodynamics Gibbs FUNDAMENTAL Relation Contact Geometry Second law of thermodynamics EQUILIBRIUM CONSTRAINT
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部