Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding...Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.展开更多
Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental...Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.展开更多
Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricult...Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricultural application.Following the rapid development of genome editing technology,generation of novel glufosinate-tolerant gene resources through artificial evolution of endogenous genes is more promising and highly desirable in rice molecular breeding program.In this study,the endogenous Glutamine synthetase1(OsGS1)was artificially evolved by base-editing-mediated gene evolution(BEMGE)in rice cells to create novel alleles conferring glufosinate tolerance in rice germplasms.Two novel glufosinate-tolerant OsGS1 alleles(OsGS1-AVPS and OsGS1-+AF)and one reported tolerant allele(OsGS1-SGTA)were successfully identified from approximately 4200 independent hygromycin-tolerant calli.Germination assays and spray tests revealed that these three OsGS1 alleles confer glufosinate tolerance in rice.Furthermore,OsGS1-AVPS and OsGS1-SGTA were quickly deployed into the elite rice cultivar Nangeng 46 through precise base editing.Overall,our results demonstrate the feasibility of developing glufosinate-tolerant rice by editing an endogenous rice gene in molecular breeding programs.展开更多
The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be ran...The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the 'Nucleotide State Transfer Matrix'. One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication.展开更多
Fish of the superfamily Cobitoidea sensu stricto (namely Ioaches) exhibit extremely high diversity of color patterns, but so far little is known about their evolutionary mechanism. Melanocortin 1 receptor gene (MCI...Fish of the superfamily Cobitoidea sensu stricto (namely Ioaches) exhibit extremely high diversity of color patterns, but so far little is known about their evolutionary mechanism. Melanocortin 1 receptor gene (MCIR) plays an important role during the synthesis of melanin and formation of animal body color patterns. In this study, we amplified and sequenced the partial MCIR gene for 44 loach individuals representing 31 species of four families. Phylogenetic analyses yielded a topology congruent with previous studies using multiple nuclear loci, showing that each of the four families was monophyletic with sister relationships of Botiidae+ (Cobitidae+(Balitoridae+Nemacheilidae)). Gene evolutionary analyses indicated that MCIR in Ioaches was under purifying selection pressure, with various sites having different dNIds values. Both Botiidae and Cobitidae had lower dN/ds values than those of background lineages, suggesting their evolution might be strongly affected by purifying selection pressure. For Balitoddae and Nemacheilidae, both had larger dNIds values than those of background lineages, suggesting they had a faster evolutionary rate under more relaxed selection pressure. Consequently, we inferred that the relatively stable color patterns in Botiidae and Cobitidae might result from the strong purifying selection pressure on the MC1R gene, whereas the complicated and diverse color patterns in Balitoridae and Nemacheilidae might be associated with the relaxed selection pressure. Given the easy experimental procedure for the partial MCTR gene and its excellent performance in reconstructing phylogeny, we suggest this gene could be used as a good molecular marker for the phylogenetic study of fish species.展开更多
In order to reveal variation and revolution of NP genes of human avian H5 N1 influenza virus strains, the NP gene of a human avian H5 N1 influenza virus strain in Guangdong was sequenced and the global NP genes of str...In order to reveal variation and revolution of NP genes of human avian H5 N1 influenza virus strains, the NP gene of a human avian H5 N1 influenza virus strain in Guangdong was sequenced and the global NP genes of strains were retrieved. The sequences were analyzed by DNAStar 5.0, and the evolutionary speed was studied with reference to the epidemiological data. It was found that NP genes of 45 strains during 1997-2006 were homologically classified into three groups: strains in 1997-1998, strains in 2004-2005 and strains from 2003 to 2006. There were 35 substitutions in NPs in all strains accounting for a ratio of 7.03% (35/498). An additional glycoprotein domain (NGT430-432) was found in NP genes in the strains of 2003-2006, the mutation of N370S in GD-01-06 resulted in occurrence of one more glycoprotein domain (NES368-370). In the synonymous variation, Ks values in NP were 2.03 × 10^-5-2.55 × 10^-5 Nt/d and K. values in NP were 1.58 × 10^-6-3.10 × 10^-6 Nt/d. There didn't exist obviously selective pressure. An additional glycoprotein domain in every strain of 2003-2006 and one more in strain GD-01-06 might change the antigenicity of human avian H5 N1 influenza virus. The variation on human avian H5 N1 influenza strains occurred frequently in the natural world, which would result in high probability of human-human transmission along with the natural evolution of the virus.展开更多
Litsea,a non-monophyletic group of the tribe Laureae(Lauraceae),plays important roles in the tropical and subtropical forests of Asia,Australia,Central and North America,and the islands of the Pacific.However,intergen...Litsea,a non-monophyletic group of the tribe Laureae(Lauraceae),plays important roles in the tropical and subtropical forests of Asia,Australia,Central and North America,and the islands of the Pacific.However,intergeneric relationships between Litsea and Laurus,Lindera,Parasassafras and Sinosassafras of the tribe Laureae remain unresolved.In this study,we present phylogenetic analyses of seven newly sequenced Litsea plastomes,together with 47 Laureae plastomes obtained from public databases,representing six genera of the Laureae.Our results highlight two highly supported monophyletic groups of Litsea taxa.One is composed of 16 Litsea taxa and two Lindera taxa.The 18 plastomes of these taxa were further compared for their gene structure,codon usage,contraction and expansion of inverted repeats,sequence repeats,divergence hotspots,and gene evolution.The complete plastome size of newly sequenced taxa varied between 152,377 bp(Litsea auriculata)and 154,117 bp(Litsea pierrei).Seven of the 16 Litsea plastomes have a pair of insertions in the IRa(trnL-trnH)and IRb(ycf2)regions.The 18 plastomes of Litsea and Lindera taxa exhibit similar gene features,codon usage,oligonucleotide repeats,and inverted repeat dynamics.The codons with the highest frequency among these taxa favored A/T endings and each of these plastomes had nine divergence hotspots,which are located in the same regions.We also identified six protein coding genes(accD,ndhJ,rbcL,rpoC2,ycf1 and ycf2)under positive selection in Litsea;these genes may play important roles in adaptation of Litsea species to various environments.展开更多
Our goal is to decipher which DNA sequences are required for tissue-specific expression of epididymal genes. At least 6 epididymis-specific lipocalin genes are known. These are differently regulated and regionalized i...Our goal is to decipher which DNA sequences are required for tissue-specific expression of epididymal genes. At least 6 epididymis-specific lipocalin genes are known. These are differently regulated and regionalized in the epididymis. Lipocalin 5 (Lcn5 or mE-RABP) and Lipocalin 8 (Lcn8 or mEP17) are homologous genes belonging to the epididymis-specific lipocalin gene cluster. Both the 5 kb promoter fragment of the Lcn5 gene and the 5.3 kb promoter fragment of the Lcn8 gene can direct transgene expression in the epididymis (Lcn5 to the distal caput and Lcn8 to the initial segment), indicating that these promoter fragments contain important cis-regulatory element(s) for epididymisspecific gene expression. To define further the fragments regulating gene expression, the Lcn5 promoter was examined in transgenic mice and immortalized epididymal cell lines. After serial deletion, the 1.8 kb promoter fragment of the Lcn5 gene was sufficient for tissue-specific and region-specific gene expression in transgenic mice. Transient transfection analysis revealed that a transcription factor forkhead box A2 (Foxa2) interacts with androgen receptor and binds to the 100 bp fragment of the Lcn5 promoter between 1.2 kb and 1.3 kb and that Foxa2 expression inhibits androgen-dependent induction of the Lcn5 promoter activity. Immunohistochemistry indicated a restricted expression of Foxa2 in the epididymis where endogenous Lcn5 gene expression is suppressed and that the Foxa2 inhibition of the Lcn5 promoter is consistent with the lack of expression of Lcn5 in the corpus and cauda. Our approach provides a basic strategy for further analysis of the epididymal lipocalin gene regulation and flexible control of epididymal function. (Asian J Androl 2007 July; 9: 515-521)展开更多
Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Br...Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Brassica(Br),and Leavenworthia alabamica(La)S-loci.Here,through multi-genomic comparative analysis of 20 species,we revealed that the most ancient S-locus was formed prior to the divergence of Brassicaceae lineage I and II.Itwas retained and inherited by Arabidopsis,as the Al S-locus in Brassicaceae lineage I.Furthermore,we found that the Br S-locus,which has been widely used in the breeding of Brassica crops to generate hybrid seeds,was formed through segmental translocation(ST)in the hexaploid ancestor of Brassica in Brassicaceae lineage II.The Br S-locus was evolved through a ST from one of the triplicated ancestral S-locus paralogs in the Brassica hexaploidy ancestor,while the other two S-locus paralogs were lost.Together with the previous discovery that the La S-locus was formed through a secondary origin in Brassicaceae lineage I,we conclude the monophyletic origin of Al and Br S-loci and clarify the evolutionary route of S-loci in the Brassicaceae family.Our findings will contribute to evolutionary studies and breeding applications of the S-locus in Brassicaceae.展开更多
In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for ...In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the superfamilies F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin a-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.展开更多
The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2), providing a rapid entrance into...The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2), providing a rapid entrance into investigating the mechanisms of development of almost any animal taxon as well as dramatically altering conceptions on the extent of genetic conservation across the animal kingdom.展开更多
Many genes associated with reproduction show rapid evolution across diverse animal groups, a result commonly due to adaptive evolution driven by positive selection (Swanson and Vacquier, 2002). Different theories ha...Many genes associated with reproduction show rapid evolution across diverse animal groups, a result commonly due to adaptive evolution driven by positive selection (Swanson and Vacquier, 2002). Different theories have been proposed to explain the elevated rates of evolution (Swanson and Vacquier, 2002), including sperm competition, where sperm compete to fertilize eggs leading to the proteins in the sper- matozoa adaptively evolving to increase their ability to fertilize eggs; sexual conflict, where the egg experiences a loss of fitness when sperm are too abundant; sexual selection, where eggs bind sperm carrying adaptive alleles (Palumbi, 1999); and cryptic female choice (reviewed in Swanson and Vacquier, 2002).展开更多
Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms con...Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms containing im portant gain-of-function genetic variations.How ever,to engineer target genes with unknown functional SNPs remains challenging.To address this issue,we present here abase-e diting-mediated gene evolution(BEMGE)m ethod,employing both Cas9n-based cytosine and adenine base editors as well as a single-guide RNA(sgRNA)library tiling the full-length coding region,for developing novel rice germ plasm swith mutations in any endogenous gene.To this end,OsALS1 was artificially evolved in rice cells using BEMGE through both Agrobacterium-mediated and particle-bom bardment-mediated transform ation.Four different types of amino acid substitutions in the evolved OsALS1,derived from two sites that have never been targeted by natural or human selection during rice dom estication,were identified,conferring varying levels of tolerance to the herbicide bispyribac-sodium.Furtherm ore,the P171F substitution identified in a strong OsALS1 allele was quickly introduced into the commercial rice cultivar Nangeng 46 through precise base editing w ith the corresponding base editor and sgRNA.Collectively,these data indicate great potential of BEMGE in creating important genetic variants of target genes for crop improvement.展开更多
Poaceae(the grasses)includes rice,maize,wheat,and other crops,and is the most economically important angiosperm family.Poaceae is also one of the largest plant families,consisting of over 11000 species with a global d...Poaceae(the grasses)includes rice,maize,wheat,and other crops,and is the most economically important angiosperm family.Poaceae is also one of the largest plant families,consisting of over 11000 species with a global distribution that contributes to diverse ecosystems.Poaceae species are classified into 12 subfamilies,with generally strong phylogenetic support for their monophyly.However,many relationships within subfamilies,among tribes and/or subtribes,remain uncertain.To better resolve the Poaceae phylogeny,we generated 342 transcriptomic and seven genomic datasets;these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera,representing 45 tribes and all 12 subfamilies.Over 1200 low-copy nuclear genes were retrieved from these datasets,with several subsets obtained using additional criteria,and used for coalescent analyses to reconstruct a Poaceae phylogeny.Our results strongly support the monophyly of 11 subfamilies;however,the subfamily Puelioideae was separated into two non-sister clades,one for each of the two previously defined tribes,supporting a hypothesis that places each tribe in a separate subfamily.Molecular clock analyses estimated the crown age of Poaceae to be101 million years old.Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis.These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase,which suggests that members of three paralogous subclades(ppc-aL1a,ppc-aL1b,and ppcB2)were recruited as functional C4 ppc genes.This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family.展开更多
New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic...New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocu- mented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicolis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula trans- ition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.展开更多
Zinc finger-homeodomain proteins (ZHD) are present in many plants; however, the evolutionary history of the ZHD gene family remains largely unknown. We show here that ZHD genes are plant-specific, nearly all intronl...Zinc finger-homeodomain proteins (ZHD) are present in many plants; however, the evolutionary history of the ZHD gene family remains largely unknown. We show here that ZHD genes are plant-specific, nearly all intronless, and related to MINI ZINC FINGER (MIF) genes that possess only the zinc finger. Phylogenetic analyses of ZHD genes from representative land plants suggest that non.seed plant ZHD genes occupy basal positions and angiosperm homologs form seven distinct clades. Several clades contain genes from two or more major angiosperm groups, including eudicots, monocots, magnoliids, and other basal angiosperms, indicating that several duplications occurred before the diversification of flowering plants. In addition, specific lineages have experienced more recent duplications. Unlike the ZHD genes, MIFs are found only from seed plants, possibly derived from ZHDs by loss of the homeodomain before the divergence of seed plants. Moreover, the MIF genes have also undergone relatively recent gene duplications. Finally, genome duplication might have contributed substantially to the expansion of family size in angiosperms and caused a high level of functional redundancy/overlap in these genes.展开更多
基金This work was supported by grants from the Natural Science Foundation of China (No. 30470990, No. 30571063)the"948"Project from the Minister of Agriculture in China, the"973"Project from the Minister of Science and Technology (No.2006CB101904)+1 种基金Hunan Natural Science Foundation (No.06JJ10006)Scientific Research Fund of Hunan Provincial Education department (No.04A024).
文摘Plants employ multifaceted mechanisms to fight with numerous pathogens in nature. Resistance (R) genes are the most effective weapons against pathogen invasion since they can specifically recognize the corresponding pathogen effectors or associated protein(s) to activate plant immune responses at the site of infection. Up to date, over 70 R genes have been isolated from various plant species. Most R proteins contain conserved motifs such as nucleotide-binding site (NBS), leucine-rich repeat (LRR), Toll-interleukin-1 receptor domain (TIR, homologous to cytoplasmic domains of the Drosophila Toll protein and the manamalian intefleukin-1 receptor), coiled-coil (CC) or leucine zipper (LZ) structure and protein kinase domain (PK). Recent results indicate that these domains play significant roles in R protein interactions with effector proteins from pathogens and in activating signal transduction pathways involved in innate immunity. This review highlights an overview of the recent progress in elucidating the structure, function and evolution of the isolated R genes in different plant-pathogen interaction systems.
基金supported by the National Key R&D Program of China(Grant No.2018YFD1000400)National Natural Science Foundation of China(Grant Nos.31860571 and 31560565)+1 种基金Major Science and Technology Projects Yunnan Province(Grant No.2016ZA005)Yunnan Youth Academic&Technical Leaders Reserve Talents Training Project(Grant No.2015HB078)。
文摘Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.
基金supported by grants from the Shenzhen Science and Technology Program(KQTD20180411143628272)Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District(PT202101-02)+3 种基金the Hainan Yazhou Bay Seed Lab(B21HJ0215),the National Natural Science Foundation of China(32102294)the China National Postdoctoral Program for Innovative Talents(BX2020378)the China Postdoctoral Science Foundation(2020M672902)the Central Publicinterest Scientific Institution Basal Research Fund(Y2022PT24).
文摘Only few glufosinate-tolerant genes,such as phosphinothricin acetyltransferase(PAT)and bialaphos resistance(bar)identified from Streptomyces,are currently available for developing genetically modified rice in agricultural application.Following the rapid development of genome editing technology,generation of novel glufosinate-tolerant gene resources through artificial evolution of endogenous genes is more promising and highly desirable in rice molecular breeding program.In this study,the endogenous Glutamine synthetase1(OsGS1)was artificially evolved by base-editing-mediated gene evolution(BEMGE)in rice cells to create novel alleles conferring glufosinate tolerance in rice germplasms.Two novel glufosinate-tolerant OsGS1 alleles(OsGS1-AVPS and OsGS1-+AF)and one reported tolerant allele(OsGS1-SGTA)were successfully identified from approximately 4200 independent hygromycin-tolerant calli.Germination assays and spray tests revealed that these three OsGS1 alleles confer glufosinate tolerance in rice.Furthermore,OsGS1-AVPS and OsGS1-SGTA were quickly deployed into the elite rice cultivar Nangeng 46 through precise base editing.Overall,our results demonstrate the feasibility of developing glufosinate-tolerant rice by editing an endogenous rice gene in molecular breeding programs.
文摘The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the 'Nucleotide State Transfer Matrix'. One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication.
基金supported by the National Natural Science Foundation of China(NSFC 31272306,31400359,31401968)
文摘Fish of the superfamily Cobitoidea sensu stricto (namely Ioaches) exhibit extremely high diversity of color patterns, but so far little is known about their evolutionary mechanism. Melanocortin 1 receptor gene (MCIR) plays an important role during the synthesis of melanin and formation of animal body color patterns. In this study, we amplified and sequenced the partial MCIR gene for 44 loach individuals representing 31 species of four families. Phylogenetic analyses yielded a topology congruent with previous studies using multiple nuclear loci, showing that each of the four families was monophyletic with sister relationships of Botiidae+ (Cobitidae+(Balitoridae+Nemacheilidae)). Gene evolutionary analyses indicated that MCIR in Ioaches was under purifying selection pressure, with various sites having different dNIds values. Both Botiidae and Cobitidae had lower dN/ds values than those of background lineages, suggesting their evolution might be strongly affected by purifying selection pressure. For Balitoddae and Nemacheilidae, both had larger dNIds values than those of background lineages, suggesting they had a faster evolutionary rate under more relaxed selection pressure. Consequently, we inferred that the relatively stable color patterns in Botiidae and Cobitidae might result from the strong purifying selection pressure on the MC1R gene, whereas the complicated and diverse color patterns in Balitoridae and Nemacheilidae might be associated with the relaxed selection pressure. Given the easy experimental procedure for the partial MCTR gene and its excellent performance in reconstructing phylogeny, we suggest this gene could be used as a good molecular marker for the phylogenetic study of fish species.
文摘In order to reveal variation and revolution of NP genes of human avian H5 N1 influenza virus strains, the NP gene of a human avian H5 N1 influenza virus strain in Guangdong was sequenced and the global NP genes of strains were retrieved. The sequences were analyzed by DNAStar 5.0, and the evolutionary speed was studied with reference to the epidemiological data. It was found that NP genes of 45 strains during 1997-2006 were homologically classified into three groups: strains in 1997-1998, strains in 2004-2005 and strains from 2003 to 2006. There were 35 substitutions in NPs in all strains accounting for a ratio of 7.03% (35/498). An additional glycoprotein domain (NGT430-432) was found in NP genes in the strains of 2003-2006, the mutation of N370S in GD-01-06 resulted in occurrence of one more glycoprotein domain (NES368-370). In the synonymous variation, Ks values in NP were 2.03 × 10^-5-2.55 × 10^-5 Nt/d and K. values in NP were 1.58 × 10^-6-3.10 × 10^-6 Nt/d. There didn't exist obviously selective pressure. An additional glycoprotein domain in every strain of 2003-2006 and one more in strain GD-01-06 might change the antigenicity of human avian H5 N1 influenza virus. The variation on human avian H5 N1 influenza strains occurred frequently in the natural world, which would result in high probability of human-human transmission along with the natural evolution of the virus.
基金supported by the National Natural Science Foundation of China(Grant No.32060710,31970223,31860005,31860620)Applied Basic Research Projects of Yunnan(Grant No.2019FB057).
文摘Litsea,a non-monophyletic group of the tribe Laureae(Lauraceae),plays important roles in the tropical and subtropical forests of Asia,Australia,Central and North America,and the islands of the Pacific.However,intergeneric relationships between Litsea and Laurus,Lindera,Parasassafras and Sinosassafras of the tribe Laureae remain unresolved.In this study,we present phylogenetic analyses of seven newly sequenced Litsea plastomes,together with 47 Laureae plastomes obtained from public databases,representing six genera of the Laureae.Our results highlight two highly supported monophyletic groups of Litsea taxa.One is composed of 16 Litsea taxa and two Lindera taxa.The 18 plastomes of these taxa were further compared for their gene structure,codon usage,contraction and expansion of inverted repeats,sequence repeats,divergence hotspots,and gene evolution.The complete plastome size of newly sequenced taxa varied between 152,377 bp(Litsea auriculata)and 154,117 bp(Litsea pierrei).Seven of the 16 Litsea plastomes have a pair of insertions in the IRa(trnL-trnH)and IRb(ycf2)regions.The 18 plastomes of Litsea and Lindera taxa exhibit similar gene features,codon usage,oligonucleotide repeats,and inverted repeat dynamics.The codons with the highest frequency among these taxa favored A/T endings and each of these plastomes had nine divergence hotspots,which are located in the same regions.We also identified six protein coding genes(accD,ndhJ,rbcL,rpoC2,ycf1 and ycf2)under positive selection in Litsea;these genes may play important roles in adaptation of Litsea species to various environments.
文摘Our goal is to decipher which DNA sequences are required for tissue-specific expression of epididymal genes. At least 6 epididymis-specific lipocalin genes are known. These are differently regulated and regionalized in the epididymis. Lipocalin 5 (Lcn5 or mE-RABP) and Lipocalin 8 (Lcn8 or mEP17) are homologous genes belonging to the epididymis-specific lipocalin gene cluster. Both the 5 kb promoter fragment of the Lcn5 gene and the 5.3 kb promoter fragment of the Lcn8 gene can direct transgene expression in the epididymis (Lcn5 to the distal caput and Lcn8 to the initial segment), indicating that these promoter fragments contain important cis-regulatory element(s) for epididymisspecific gene expression. To define further the fragments regulating gene expression, the Lcn5 promoter was examined in transgenic mice and immortalized epididymal cell lines. After serial deletion, the 1.8 kb promoter fragment of the Lcn5 gene was sufficient for tissue-specific and region-specific gene expression in transgenic mice. Transient transfection analysis revealed that a transcription factor forkhead box A2 (Foxa2) interacts with androgen receptor and binds to the 100 bp fragment of the Lcn5 promoter between 1.2 kb and 1.3 kb and that Foxa2 expression inhibits androgen-dependent induction of the Lcn5 promoter activity. Immunohistochemistry indicated a restricted expression of Foxa2 in the epididymis where endogenous Lcn5 gene expression is suppressed and that the Foxa2 inhibition of the Lcn5 promoter is consistent with the lack of expression of Lcn5 in the corpus and cauda. Our approach provides a basic strategy for further analysis of the epididymal lipocalin gene regulation and flexible control of epididymal function. (Asian J Androl 2007 July; 9: 515-521)
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFD0100307 and 2018YFD1000800)the National Natural Science Foundation of China (Grant No. 31722048 and 31630068)+1 种基金the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciencesthe Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, China
文摘Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Brassica(Br),and Leavenworthia alabamica(La)S-loci.Here,through multi-genomic comparative analysis of 20 species,we revealed that the most ancient S-locus was formed prior to the divergence of Brassicaceae lineage I and II.Itwas retained and inherited by Arabidopsis,as the Al S-locus in Brassicaceae lineage I.Furthermore,we found that the Br S-locus,which has been widely used in the breeding of Brassica crops to generate hybrid seeds,was formed through segmental translocation(ST)in the hexaploid ancestor of Brassica in Brassicaceae lineage II.The Br S-locus was evolved through a ST from one of the triplicated ancestral S-locus paralogs in the Brassica hexaploidy ancestor,while the other two S-locus paralogs were lost.Together with the previous discovery that the La S-locus was formed through a secondary origin in Brassicaceae lineage I,we conclude the monophyletic origin of Al and Br S-loci and clarify the evolutionary route of S-loci in the Brassicaceae family.Our findings will contribute to evolutionary studies and breeding applications of the S-locus in Brassicaceae.
文摘In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the superfamilies F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin a-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.
文摘The discovery of the homeobox motif and its presence in each gene of the Hox clusters revolutionized the fields of developmental biology and evolutionary developmental biology (1, 2), providing a rapid entrance into investigating the mechanisms of development of almost any animal taxon as well as dramatically altering conceptions on the extent of genetic conservation across the animal kingdom.
基金supported by the grant from the National Natural Science Foundation of China(No.31061160189)
文摘Many genes associated with reproduction show rapid evolution across diverse animal groups, a result commonly due to adaptive evolution driven by positive selection (Swanson and Vacquier, 2002). Different theories have been proposed to explain the elevated rates of evolution (Swanson and Vacquier, 2002), including sperm competition, where sperm compete to fertilize eggs leading to the proteins in the sper- matozoa adaptively evolving to increase their ability to fertilize eggs; sexual conflict, where the egg experiences a loss of fitness when sperm are too abundant; sexual selection, where eggs bind sperm carrying adaptive alleles (Palumbi, 1999); and cryptic female choice (reviewed in Swanson and Vacquier, 2002).
基金This work was supported by grants from the National Natural Science Foundation of China(31871948)the Fundamental Research Funds,and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences to H.Z.a grant from the Fundamental Research Funds for the Central Universities to S.L.
文摘Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms containing im portant gain-of-function genetic variations.How ever,to engineer target genes with unknown functional SNPs remains challenging.To address this issue,we present here abase-e diting-mediated gene evolution(BEMGE)m ethod,employing both Cas9n-based cytosine and adenine base editors as well as a single-guide RNA(sgRNA)library tiling the full-length coding region,for developing novel rice germ plasm swith mutations in any endogenous gene.To this end,OsALS1 was artificially evolved in rice cells using BEMGE through both Agrobacterium-mediated and particle-bom bardment-mediated transform ation.Four different types of amino acid substitutions in the evolved OsALS1,derived from two sites that have never been targeted by natural or human selection during rice dom estication,were identified,conferring varying levels of tolerance to the herbicide bispyribac-sodium.Furtherm ore,the P171F substitution identified in a strong OsALS1 allele was quickly introduced into the commercial rice cultivar Nangeng 46 through precise base editing w ith the corresponding base editor and sgRNA.Collectively,these data indicate great potential of BEMGE in creating important genetic variants of target genes for crop improvement.
基金supported by funds from Eberly College of Science and the Huck Institutes of the Life Sciences at the Pennsylvania State University and from grants from the National Natural Science Foundation of China(31770242 and 31970224)funds from the Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and State Key Laboratory of Genetic Engineering at Fudan University.
文摘Poaceae(the grasses)includes rice,maize,wheat,and other crops,and is the most economically important angiosperm family.Poaceae is also one of the largest plant families,consisting of over 11000 species with a global distribution that contributes to diverse ecosystems.Poaceae species are classified into 12 subfamilies,with generally strong phylogenetic support for their monophyly.However,many relationships within subfamilies,among tribes and/or subtribes,remain uncertain.To better resolve the Poaceae phylogeny,we generated 342 transcriptomic and seven genomic datasets;these were combined with other genomic and transcriptomic datasets to provide sequences for 357 Poaceae species in 231 genera,representing 45 tribes and all 12 subfamilies.Over 1200 low-copy nuclear genes were retrieved from these datasets,with several subsets obtained using additional criteria,and used for coalescent analyses to reconstruct a Poaceae phylogeny.Our results strongly support the monophyly of 11 subfamilies;however,the subfamily Puelioideae was separated into two non-sister clades,one for each of the two previously defined tribes,supporting a hypothesis that places each tribe in a separate subfamily.Molecular clock analyses estimated the crown age of Poaceae to be101 million years old.Ancestral character reconstruction of C3/C4 photosynthesis supports the hypothesis of multiple independent origins of C4 photosynthesis.These origins are further supported by phylogenetic analysis of the ppc gene family that encodes the phosphoenolpyruvate carboxylase,which suggests that members of three paralogous subclades(ppc-aL1a,ppc-aL1b,and ppcB2)were recruited as functional C4 ppc genes.This study provides valuable resources and a robust phylogenetic framework for evolutionary analyses of the grass family.
基金This work was supported by the National Natural Science Foundation of China (31671325 and 31271339). N.O.O. thanks the CAS-TWAS President's Fellowship Program for Doctoral Candidates for support.
文摘New genes are drivers of evolutionary innovation and phenotypic evolution. Expression of new genes in early development raises the possibility that new genes could originate and be recruited for functions in embryonic development, but this remains undocu- mented. Here, based on temporal gene expression at different developmental stages in Xenopus tropicolis, we found that young protein-coding genes were significantly enriched for expression in developmental stages occurring after the midblastula trans- ition (MBT), and displayed a decreasing trend in abundance in the subsequent stages after MBT. To complement the finding, we demonstrate essential functional attributes of a young orphan gene, named as Fog2, in morphological development. Our data indicate that new genes could originate after MBT and be recruited for functions in embryonic development, and thus provide insights for better understanding of the origin, evolution, and function of new genes.
基金a National Science Foundation Plant Genome Grant for theFloral Genome Project (DBI-0115684)the Biology Department and the Huck Institutes of the Life Sciences, Pennsylvania State UniversityThisstudy was conducted using material generated in part with support from theNational Science Foundation (No. 0215923)
文摘Zinc finger-homeodomain proteins (ZHD) are present in many plants; however, the evolutionary history of the ZHD gene family remains largely unknown. We show here that ZHD genes are plant-specific, nearly all intronless, and related to MINI ZINC FINGER (MIF) genes that possess only the zinc finger. Phylogenetic analyses of ZHD genes from representative land plants suggest that non.seed plant ZHD genes occupy basal positions and angiosperm homologs form seven distinct clades. Several clades contain genes from two or more major angiosperm groups, including eudicots, monocots, magnoliids, and other basal angiosperms, indicating that several duplications occurred before the diversification of flowering plants. In addition, specific lineages have experienced more recent duplications. Unlike the ZHD genes, MIFs are found only from seed plants, possibly derived from ZHDs by loss of the homeodomain before the divergence of seed plants. Moreover, the MIF genes have also undergone relatively recent gene duplications. Finally, genome duplication might have contributed substantially to the expansion of family size in angiosperms and caused a high level of functional redundancy/overlap in these genes.