期刊文献+
共找到653篇文章
< 1 2 33 >
每页显示 20 50 100
Gradient Gene Algorithm: a Fast Optimization Method to MST Problem
1
作者 Zhang Jin bo, Xu Jing wen, Li Yuan xiang State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期535-540,共6页
The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is int... The extension of Minimum Spanning Tree(MST) problem is an NP hard problem which does not exit a polynomial time algorithm. In this paper, a fast optimization method on MST problem——the Gradient Gene Algorithm is introduced. Compared with other evolutionary algorithms on MST problem, it is more advanced: firstly, very simple and easy to realize; then, efficient and accurate; finally general on other combination optimization problems. 展开更多
关键词 combination optimization minimum spanning tree problem extension of minimum spanning tree problem gradient gene algorithm
下载PDF
SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY GENETIC ALGORITHM 被引量:13
2
作者 乔兵 孙志峻 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期108-112,共5页
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper... The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm. 展开更多
关键词 flexible job shop gene tic algorithm job shop scheduling
下载PDF
A Gene-Pool Based Genetic Algorithm for TSP 被引量:6
3
作者 Yang Hui, Kang Li-shan, Chen Yu-pingState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期217-223,共7页
Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is t... Based on the analysis of previous genetic algorithms (GAs) for TSP, a novel method called Ge- GA is proposed. It combines gene pool and GA so as to direct the evolution of the whole population. The core of Ge- GA is the construction of gene pool and how to apply it to GA. Different from standard GAs, Ge- GA aims to enhance the ability of exploration and exploitation by incorporating global search with local search. On one hand a local search called Ge- Lo-calSearch operator is proposed to improve the solution quality, on the other hand the modified Inver-Over operator called Ge InverOver is considered as a global search mechanism to expand solution space of local minimal. Both of these operators are based on the gene pool. Our algorithm is applied to 11 well-known traveling salesman problems whose numbers of cities are from 70 to 1577 cities. The experiments results indicate that Ge- GA has great robustness for TSP. For each test instance, the average value of solution quality, found in accepted time, stays within 0. 001% from the optimum. 展开更多
关键词 genetic algorithm gene Pool minimal spanning tree combinatorial optimization TSP
下载PDF
Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm 被引量:4
4
作者 Gui-xia Liu, Wei Feng, Han Wang, Lei Liu, Chun-guang ZhouCollege of Computer Science and Technology, Jilin University, Changchun 130012,P.R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第1期86-92,共7页
In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task i... In the post-genomic biology era,the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system,and it has been a challenging task in bioinformatics.The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages,but how to determine the network structure and parameters is still important to be explored.This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network.The new algorithm is evaluated with the use of both simulated and yeast cell cycle data.The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy. 展开更多
关键词 gene regulatory networks two-stage learning algorithm Bayesian network immune evolutionary algorithm
下载PDF
Efficient Numerical Optimization Algorithm Based on New Real-Coded Genetic Algorithm, AREX + JGG, and Application to the Inverse Problem in Systems Biology 被引量:1
5
作者 Asako Komori Yukihiro Maki +2 位作者 Masahiko Nakatsui Isao Ono Masahiro Okamoto 《Applied Mathematics》 2012年第10期1463-1470,共8页
In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical... In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the interactions with using experimentally observed time-course data. Compared with conventional RCGA, the combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary stagnation in the last stage of search. 展开更多
关键词 Inverse Problem S-SYSTEM FORMALISM gene REGULATORY Network System Identification Real-Coded genetic algorithm
下载PDF
基于机器学习的茶树DNA聚类算法
6
作者 杨小平 倪萍 +4 位作者 诸葛天秋 罗跃新 郭春雨 庞月兰 吴雨婷 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第2期386-399,共14页
为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据... 为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据累计方差贡献率的占比大于85%的标准确定降维主元个数对KPCA进行降维改进并采用k-means++算法对降维后数据聚类,通过CH(Calinski-Harabaze Index)指标和响应时间分析聚类结果。结果表明:在单独聚类、KPCA聚类、改进PCA聚类、改进KPCA聚类4种处理方式中,改进KPCA-k-means++算法在不同处理方式和不同样本数的对比下,CH指标均为最高,与未改进时相比平均高出33%。在响应时间方面,改进KPCA-k-means++算法与同样改进PCA-k-means++算法在不同聚类数和样本数的对比下响应时间均较短。改进KPCA-k-means++算法能够保证对于茶树的基因序列的聚类准确率和聚类速度,表现出极好的聚类稳定性。 展开更多
关键词 核主成分分析 累计方差贡献率 K均值聚类算法 基因聚类
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
7
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 gene selection Support VECTOR machine (SVM) RECURSIVE feature ELIMINATION (RFE) geneTIC algorithm (GA) Parameter SELECTION
下载PDF
基于高频组合片段-基因表达式编程算法的轨道交通地面沉降预测模型
8
作者 胡珉 卢孟栋 《城市轨道交通研究》 北大核心 2024年第8期206-210,共5页
[目的]地面沉降预测和控制是轨道交通盾构法隧道施工中最为关注的问题之一。为了解决现有地面沉降预测和控制中存在的模型表达过于复杂且缺乏解释性的问题,需要一种既简洁清晰,又能够描述复杂问题的可解释模型,GEP(基因表达式编程)算法... [目的]地面沉降预测和控制是轨道交通盾构法隧道施工中最为关注的问题之一。为了解决现有地面沉降预测和控制中存在的模型表达过于复杂且缺乏解释性的问题,需要一种既简洁清晰,又能够描述复杂问题的可解释模型,GEP(基因表达式编程)算法提供了这种可能性,因此需对基于HFS(高频组合片段)-GEP算法的轨道交通地面沉降预测模型进行深入研究。[方法]以杭绍城际铁路某区段盾构隧道工程为依托,选取盾构施工过程中的土舱压力、刀盘扭矩、刀盘转速、推进速度、总推力、隧道埋深及盾尾注浆量等参数作为关键输入型施工参数,地面沉降作为输出型施工参数,通过备选公式集筛选以及HFS选取,建立基于HFS-GEP算法的轨道交通地面沉降预测模型。利用该模型对第180环—第210环区段的关键施工参数进行优化调整,分析盾构施工参数变化对地面最终沉降的影响效果。[结果及结论]基于HFS-GEP算法的地面沉降预测模型可以反映盾构施工参数与地面最终沉降的显式关系;相较于传统GEP算法的地面沉降预测模型,该模型准确度更高,结构更为简洁,且收敛速度更快。通过对盾构关键施工参数进行优化调整,该模型可将第180环—第210环区段的最终沉降量控制在10 mm以内。 展开更多
关键词 轨道交通 地面沉降预测模型 高频组合片段 基因表达式编程算法
下载PDF
基于GEO数据库分析高血压肾病的差异表达基因及免疫细胞浸润
9
作者 王益民 苏小艺 +3 位作者 苏文革 彭伟 李焱 王怡斐 《中国免疫学杂志》 CAS CSCD 北大核心 2024年第2期240-246,共7页
目的:分析高血压肾病(HN)差异表达基因(DEGs)及免疫细胞浸润模式。方法:从GEO数据库中下载HN和健康人肾小管间质组织样本基因芯片数据集,使用R软件分析得到DEGs,并利用Metascape在线分析平台进行DEGs的功能富集分析,通过LASSO、SVM-RFE... 目的:分析高血压肾病(HN)差异表达基因(DEGs)及免疫细胞浸润模式。方法:从GEO数据库中下载HN和健康人肾小管间质组织样本基因芯片数据集,使用R软件分析得到DEGs,并利用Metascape在线分析平台进行DEGs的功能富集分析,通过LASSO、SVM-RFE和RF三种机器学习算法筛选特征基因并验证诊断价值,最后利用CIBERSORT算法进行免疫细胞浸润分析。结果:共获得277个DEGs,功能富集分析发现其与先天免疫反应、体液免疫反应、对细胞因子的反应等多种免疫相关过程有关。机器学习算法共获得3个特征基因,分别为CISH、GADD45A和ZFP36,均具有良好的诊断价值,免疫细胞浸润分析发现调节性T细胞和M1巨噬细胞浸润较多,并且多种免疫细胞之间具有相关性。结论:HN的发病机制可能与多种免疫相关过程有关,调节性T细胞和M1巨噬细胞可能在HN的发病机制中发挥关键作用,CISH、GADD45A和ZFP36是HN潜在的诊断标志物。 展开更多
关键词 高血压肾病 差异表达基因 机器学习算法 诊断标志物 免疫细胞浸润
下载PDF
基于K-modes聚类算法的山东省传统村落空间风貌类型及区划研究 被引量:1
10
作者 范勇 李玄 肖文杰 《小城镇建设》 2024年第5期100-107,共8页
传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-mo... 传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-modes聚类算法对山东省177个传统村落进行聚类分析,得到八大空间风貌类型,进一步结合区域文化、地理特点及行政区划,划分出山东省5个传统村落风貌区,从宏观视角分析了山东省传统村落空间风貌特征及其形成与发展的内在逻辑和地理分布规律,为更加整体全面地认识山东省传统村落特点、开展区域性传统村落集中连片保护利用等工作提供科学参考。 展开更多
关键词 传统村落 空间基因 K-modes聚类算法 空间区划 山东省
下载PDF
基于单细胞RNA测序数据的基因调控网络推断算法综述
11
作者 张少强 潘镜伊 《天津师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期1-12,共12页
通过基因表达的变化可以推断基因调控网络.单细胞RNA测序(scRNA-seq)为推断细胞周期或分化等时间依赖性生物过程的基因调控网络提供了新的可能性,基于scRNA-seq数据的基因调控网络推断算法成为一个相对活跃的研究方向.本文首先对26种基... 通过基因表达的变化可以推断基因调控网络.单细胞RNA测序(scRNA-seq)为推断细胞周期或分化等时间依赖性生物过程的基因调控网络提供了新的可能性,基于scRNA-seq数据的基因调控网络推断算法成为一个相对活跃的研究方向.本文首先对26种基因调控网络推断算法进行介绍,包括3种针对批量RNA测序数据的推断算法和23种针对scRNA-seq数据的推断算法(基于布尔网络的算法2种、基于微分方程的算法3种、基于伪时序基因相关性集成策略的算法5种、基于共表达基因的算法4种、基于细胞特异性的算法3种、基于深度学习的算法6种),详细描述了每类算法的方法原理和算法优缺点,对算法进行综合比较;然后分析了推断算法比较研究的相关成果,并使用scRNA-seq数据简单评估了26种算法的性能;最后探讨当前基因调控网络推断算法面临的机遇与挑战. 展开更多
关键词 基因调控网络 单细胞RNA测序 网络推断算法 深度学习
下载PDF
加权共表达网络分析与机器学习识别类风湿关节炎滑膜中的关键基因
12
作者 武英楷 史高龙 谢宗刚 《中国组织工程研究》 CAS 北大核心 2025年第2期294-301,共8页
背景:类风湿关节炎是一种全身的免疫相关性疾病,主要病理特点是关节滑膜炎性增生及关节软骨的破坏,其发病机制目前尚不明确,迫切需要发现新的具有高度敏感性和特异性的诊断标志物。目的:联合使用生物信息学技术及计算机学习算法,识别并... 背景:类风湿关节炎是一种全身的免疫相关性疾病,主要病理特点是关节滑膜炎性增生及关节软骨的破坏,其发病机制目前尚不明确,迫切需要发现新的具有高度敏感性和特异性的诊断标志物。目的:联合使用生物信息学技术及计算机学习算法,识别并筛选类风湿关节炎患者滑膜中的关键基因,构建类风湿关节炎预测模型并进行验证。方法:从基因表达综合数据库中下载3个包含类风湿关节炎患者滑膜的数据集(GSE77298、GSE55235、GSE55457),GSE77298和GSE55235作为训练集,GSE55457作为测试集,共纳入66个样本,其中类风湿关节炎患者滑膜样本39个,正常滑膜样本27个。应用R语言筛选训练集中的差异基因,然后使用加权共表达网络将训练集中的基因模块化,选出关键模块中的特征基因,将差异表达基因和特征基因取交集,交集基因进入下一步机器学习。采用3种机器学习方法:最小绝对值收敛和选择算子算法、支持向量机-递归特征消除和随机森林算法对交集基因进一步分析获得枢纽基因,将枢纽基因再次相交即得到类风湿关节炎滑膜中的关键基因。以关键基因为变量构建预测类风湿关节炎的列线图模型,推测患者发生类风湿关节炎的危险程度,使用受试者工作特征曲线确定类风湿关节炎预测模型及其关键基因的诊断价值。结果与结论:①通过差异分析,训练集中共筛选出差异基因730个,加权共表达网络分析得到特征基因185个,两者交集基因159个;②最小绝对值收敛和选择算子发现枢纽基因4个,支持向量机-递归特征消除发现枢纽基因11个,随机森林发现枢纽基因5个,取交集后获得关键基因2个(TNS3、SDC1);③基于2个关键基因,在训练集及测试集种构建列线图,其校准预测曲线与标准曲线贴合较好,且预测类风湿关节炎发生的临床效能良好;④上述结果证实,基于生物信息及机器学习算法获得的TNS3和SDC1有可能成为类风湿关节炎诊断和治疗的关键靶点。 展开更多
关键词 加权基因共表达网络 机器学习算法 类风湿关节炎 关键基因 预测模型
下载PDF
基于F-score和二进制灰狼优化的肿瘤基因选择方法
13
作者 穆晓霞 郑李婧 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第1期111-120,共10页
针对肿瘤基因数据维度高、噪声多、冗余性高的现状,结合Spearman相关系数改进F-score算法,在此基础上优化二进制灰狼算法,提出了一种基于改进F-score和二进制灰狼算法的肿瘤基因选择算法.首先,考虑特征之间的相关性,计算每个特征的F-sc... 针对肿瘤基因数据维度高、噪声多、冗余性高的现状,结合Spearman相关系数改进F-score算法,在此基础上优化二进制灰狼算法,提出了一种基于改进F-score和二进制灰狼算法的肿瘤基因选择算法.首先,考虑特征之间的相关性,计算每个特征的F-score值和特征之间的Spearman相关系数的绝对值;然后,计算权重系数得出各个特征的权重值,依据重要性进行排序,选出初选特征子集;最后,通过收敛因子的衰减曲线和初始化方法优化二进制灰狼算法,调整全局搜索和局部搜索所占比例,增强全局搜索能力并提高局部搜索速度,有效节省时间开销,提升特征选择的分类性能和效率,得到最优特征子集.在9个肿瘤基因数据集上测试所提算法,在分类准确率和筛选特征数目两个指标上进行仿真实验,并与4种其他算法进行对比,实验结果证明所提算法表现良好,可有效降低基因数据维度,并具有较好的分类精度. 展开更多
关键词 肿瘤基因 Fisher-score Spearman 相关系数 二进制灰狼优化算法 特征选择
下载PDF
一种二进制癌症单驱动通路识别模型和算法
14
作者 张奕 鲁贺 《计算机应用研究》 CSCD 北大核心 2024年第6期1728-1734,共7页
针对驱动通路识别的相关研究依赖传统生物实验方法,存在费时费力且经济成本高的问题,提出一种新的二进制癌症驱动通路识别方法PEA-BLMWS。首先,利用已有的基因表达数据,通过对比正常基因与突变基因表达量的差异,挖掘潜在的基因突变数据... 针对驱动通路识别的相关研究依赖传统生物实验方法,存在费时费力且经济成本高的问题,提出一种新的二进制癌症驱动通路识别方法PEA-BLMWS。首先,利用已有的基因表达数据,通过对比正常基因与突变基因表达量的差异,挖掘潜在的基因突变数据;其次,引入蛋白质相互作用网络数据,构建出一个改进的二进制线性最大权重子矩阵模型;最后,提出一种双亲协同进化算法求解该矩阵模型。在GBM(glioblastoma)和OVCA(ovarian cancer)数据集上的实验结果表明,相比于其他先进的Dendrix、CCA-NMWS和CGP-NCM识别方法,PEA-BLMWS识别的基因集中有更多基因富集在已知的信号通路中,未富集在信号通路中的基因也与癌症的发生密切相关,故该识别方法可作为一种驱动通路识别的有效工具。 展开更多
关键词 驱动通路 基因突变 基因表达 进化算法
下载PDF
基于Spark云计算的生物基因多序列比对方法
15
作者 杨波 陈洋广 徐胜超 《计算机测量与控制》 2024年第7期274-279,287,共7页
在生物基因多序列比对过程中,早期的方法仅计算了单一的Spark集群参数,导致算法的并行效果较差;为此,设计了基于Spark云计算的生物基因多序列比对方法;基于获得的生物遗传序列数据,对其进行了优化,并通过计算不同序列间的匹配度,对生物... 在生物基因多序列比对过程中,早期的方法仅计算了单一的Spark集群参数,导致算法的并行效果较差;为此,设计了基于Spark云计算的生物基因多序列比对方法;基于获得的生物遗传序列数据,对其进行了优化,并通过计算不同序列间的匹配度,对生物基因多序列比对任务进行动态规划;利用Spark云计算技术,构建Spark集群,并对多个Spark集群的参数进行计算;利用多种生物基因序列之间的相似性与差异性来选择最佳的匹配路径,在此基础上,建立多个生物基因序列比对的并行计算模型,并对其进行求解,得到对应的多个序列对比对的并行算法;实验结果表明:该方法具有更好的并行性,能够有效提高多序列比对的性能。 展开更多
关键词 Spark云计算 生物基因 生物信息学 基因多序列比对 并行算法
下载PDF
Identification of metastasis-associated genes in colorectal cancer through an integrated genomic and transcriptomic analysis 被引量:2
16
作者 Xiaobo Li Sihua Peng 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2013年第6期623-636,共14页
Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroa... Objective: Identification of colorectal cancer (CRC) metastasis genes is one of the most important issues in CRC research. For the purpose of mining CRC metastasis-associated genes, an integrated analysis of mJcroarray data was presented, by combined with evidence acquired from comparative genornic hybridization (CGH) data. Methods: Gene expression profile data of CRC samples were obtained at Gene Expression Omnibus (GEO) website. The 15 important chromosomal aberration sites detected by using CGH technology were used for integrated genomic and transcriptomic analysis. Significant Analysis of Microarray (SAM) was used to detect significantly differentially expressed genes across the whole genome. The overlapping genes were selected in their corresponding chromosomal aberration regions, and analyzed by using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Finally, SVM-T-RFE gene selection algorithm was applied to identify ted genes in CRC. Results: A minimum gene set was obtained with the minimum number [14] of genes, and the highest classification accuracy (100%) in both PRI and META datasets. A fraction of selected genes are associated with CRC or its metastasis. Conclusions- Our results demonstrated that integration analysis is an effective strategy for mining cancer- associated genes. 展开更多
关键词 Colorectal cancer metastasis integrated analysis comparative genomic hybridization (CGH) Significant Analysis of Microarray (SAM) Database for Annotation Visualization and Integrated Discovery(DAVID) SVM-T-RFE gene selection algorithm
下载PDF
基于GenePANDA算法的精神分裂症药物靶基因预测
17
作者 孙慧 田卫东 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期401-411,共11页
精神分裂症是常见的精神障碍类疾病.目前,治疗精神分裂症的药物存在疗效差、副作用大和耐药性的问题,迫切需要开发新的药物,而发现新的药物靶基因是开发新药的重要环节.为了预测精神分裂症药物的靶基因,我们首先基于DrugBank中药物已知... 精神分裂症是常见的精神障碍类疾病.目前,治疗精神分裂症的药物存在疗效差、副作用大和耐药性的问题,迫切需要开发新的药物,而发现新的药物靶基因是开发新药的重要环节.为了预测精神分裂症药物的靶基因,我们首先基于DrugBank中药物已知的靶基因,使用网络算法GenePANDA预测出候选靶基因;之后,我们对药物已知靶基因进行功能富集分析,使用富集出的生物学通路筛选候选靶基因,最终得到48个候选靶基因.其中,29个基因被报道和精神分裂症直接相关,13个基因被报道为精神分裂症药物的靶基因.此外,在DrugBank中共有54种药物靶向预测出的基因,其中17种药物被研究报道可用于治疗精神分裂症. 展开更多
关键词 精神分裂症 药物靶基因 网络算法 功能富集分析
下载PDF
基于WGCNA和机器学习算法探索结直肠癌肝转移的机制及其潜在生物标志物
18
作者 张平茜 何亚玲 +3 位作者 李宇阳 胡诗涵 高波 潘云 《右江医学》 2024年第6期481-490,共10页
目的通过基于加权基因共表达网络分析(WGCNA)和机器学习算法探索结直肠肝转移(CRCLM)潜在生物标志物,为CRCLM的分子机制研究提供基础。方法从GEO数据库中收集两个CRCLM的微阵列数据集(GSE6988和GSE14297),鉴定出CRCLM中的差异表达基因(D... 目的通过基于加权基因共表达网络分析(WGCNA)和机器学习算法探索结直肠肝转移(CRCLM)潜在生物标志物,为CRCLM的分子机制研究提供基础。方法从GEO数据库中收集两个CRCLM的微阵列数据集(GSE6988和GSE14297),鉴定出CRCLM中的差异表达基因(DEGs)后进行基因本体论(GO)分析、京都基因和基因组百科全书(KEGG)富集分析和基因集富集分析(GSEA)。应用WGCNA筛选与CRCLM组相关性最强的模块内基因,采用机器学习算法最小绝对值收缩与筛选算子(LASSO)逻辑回归和支持向量机-递归特征消除(SVM-RFE)鉴定CRCLM的潜在生物标志物。比较GSE6988中CRCLM组和对照组的关键基因表达量,同时绘制关键基因诊断CRCLM的受试者工作特征(ROC)曲线,通过曲线下面积(AUC)评估其诊断效能,并在GSE14297中进行验证。结果鉴定出73个DEGs,包括55个上调基因和18个下调基因。生物学功能富集分析表明,DEGs主要富集于血液微粒和趋化因子相关的通路。WGCNA共得到了5个基因共表达模块,其中黄色模块与CRCLM相关性最强(cor=0.72,P=2e-14),其中包含81个基因。对黄色模块基因进行LASSO逻辑回归分析,其中4个基因(CCL11、SLC26A3、NR4A2、PLA2G2A)被确定为潜在的具有诊断性生物标志物,通过SVM-RFE算法,从DEGs中获得19个基因(CRP、HP、ORM2、CYP2E1、CCL11、MMP10、AQP3、SERPINA3、ENO3、HAO1、PLG、ENAM、DGUOK、UBE2Q2、HPX、APOA2、ITIH3、ANGPTL3、MMP1)作为潜在的诊断基因,将LASSO算法以及SVM-RFE算法得到的关键基因取交集。最终嗜酸细胞活化趋化因子(CCL11)被确定为有希望的生物标志物。在训练集及验证集中,CRCLM组的CCL11表达均显著低于对照组(P<0.001)。在训练集和验证集中的ROC曲线分析结果显示,CCL11诊断CRCLM的AUC分别为0.936和0.997,显示出很强的预测预后的能力。结论CCL11在CRCLM中低表达,可能是CRCLM的抑制因素,是CRCLM可能的预后生物分子标志物。CRCLM的发生发展可能与肿瘤血管微环境及趋化因子相关通路相关。 展开更多
关键词 结直肠癌肝转移 加权基因共表达网络分析 机器学习算法 生物信息学 嗜酸细胞活化趋化因子
下载PDF
Multi-objective Optimization Conceptual Design of Product Structure Based on Variable Length Gene Expression 被引量:6
19
作者 WEI Xiaopeng ZHAO Tingting +2 位作者 JU Zhenhe ZHANG Shi LI Xiaoxiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期42-49,共8页
It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure acc... It is a complicated problem for the bottom-to-top adaptive conceptual design of complicated products between structure and function. Reliable theories demand to be found in order to determine whether the structure accords with the requirement of design. For the requirement generally is dynamic variety as time passes, new requirements will come, and some initial requirements can no longer be used. The number of product requirements, the gene length expressing requirements, the structure of the product, and the correlation matrix are varied with individuation of customer requirements of the product. By researching on the calculation mechanisms of dynamic variety, the approaches of gene expression and variable length gene expression are proposed. According to the diversity of structure selection in conceptual design and mutual relations between structure and function as well as structure and structure, the correlation matrixes between structure and function as well as structure and structure are defined. By the approach of making the sum of the elements of correlation matrix maximum, the mathematical models of multi-object optimization for structure design are provided based on variable requirements. An improved genetic algorithm called segment genetic algorithm is proposed based on optimization preservation simple genetic algorithm. The models of multi-object optimization are calculated by the segment genetic algorithm and hybrid genetic algorithm. An example for the conceptual design of a washing machine is given to show that the proposed method is able to realize the optimization structure design fitting for variable requirements. In addition, the proposed approach can provide good Pareto optimization solutions, and the individuation customer requirements for structures of products are able to be resolved effectively. 展开更多
关键词 gene expression multi-object optimization conceptual design genetic algorithm
下载PDF
Identification of Small and Discriminative Gene Signatures for Chemosensitivity Prediction in Breast Cancer
20
作者 Wei Hu 《Journal of Cancer Therapy》 2011年第2期196-202,共7页
Various gene signatures of chemosensitivity in breast cancer have been discovered. One previous study employed t-test to find a signature of 31 probe sets (27 genes) from a group of patients who received weekly preope... Various gene signatures of chemosensitivity in breast cancer have been discovered. One previous study employed t-test to find a signature of 31 probe sets (27 genes) from a group of patients who received weekly preoperative chemotherapy. Based on this signature, a 30-probe set diagonal linear discriminant analysis (DLDA-30) classifier of pathologic complete response (pCR) was constructed. In this study, we sought to uncover a signature that is much smaller than the 31 probe sets and yet has enhanced predictive performance. A signature of this nature could inform us what genes are essential in response prediction. Genetic algorithms (GAs) and sparse logistic regression (SLR) were employed to identify two such small signatures. The first had 13 probe sets (10 genes) selected from the 31 probe sets and was used to build a SLR predictor of pCR (SLR-13), and the second had 14 probe sets (14 genes) selected from the genes involved in Notch signaling pathway and was used to develop another SLR predictor of pCR (SLR-Notch-14). The SLR-13 and SLR-Notch-14 had a higher accuracy and a higher positive predictive value than the DLDA-30 with much lower P values, suggesting that our two signatures had their own discriminative power with high statistical significance. The SLR prediction model also suggested the dual role of gene RNUX1 in promoting residual disease (RD) or pCR in breast cancer. Our results demonstrated that the multivariable techniques such as GAs and SLR are effective in finding significant genes in chemosensitivity prediction. They have the advantage of revealing the interacting genes, which might be missed by single variable techniques such as t-test. 展开更多
关键词 geneTIC algorithm gene SIGNATURE BREAST Cancer Sparse LOGISTIC Regression PREDICTOR CHEMOSENSITIVITY
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部