期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Design Process Optimization Based on Design Process Gene Mapping
1
作者 LI Bo TONG Shu-rong 《International Journal of Plant Engineering and Management》 2011年第3期178-185,共8页
The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzi... The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene. 展开更多
关键词 design process optimization design process gene design process gene characteristic are identified and the delocates the defective design mapping design process
下载PDF
Genetics of congenital heart defects in DiGeorge syndrome
2
作者 李嘉欣 郭惠明 +2 位作者 庄建 陈寄梅 朱平 《South China Journal of Cardiology》 CAS 2014年第3期213-218,共6页
Background Di George syndrome(DGS) is the most common microdeletion syndrome in humans and a disorder caused by a defect in chromosome 22. Almost 80% of DGS patients manifest congenital heart defects(CHD), which a... Background Di George syndrome(DGS) is the most common microdeletion syndrome in humans and a disorder caused by a defect in chromosome 22. Almost 80% of DGS patients manifest congenital heart defects(CHD), which are highly variable and severe. However, the genetics of CHD in DGS remain elusive. This review concludes that the TBX1 gene plays a critical role in cardiovascular defects, involving many additional genes, such as Six1, Eya1, Fgf8, Fox, and Shh. Concerning the variable manifestations of CHD in DGS,additional modifiers have been shown of involvement, such as Wnt, MOZ, micro RNAs, VEGF, and CRK.Knowledge of the genetics underlying CHD in DGS has the potential to early detection and treatment of this disease. 展开更多
关键词 DiGeorge syndrome congenital heart defects T-box transcription factor 1 genes
原文传递
From azoospermia to macrozoospermia,a phenotypic continuum due to mutations in the ZMYND15 gene 被引量:4
3
作者 Zine-Eddine Kherraf Caroline Cazin +5 位作者 Florence Lestrade Jana Muronova Charles Coutton Christophe Arnoult Nicolas Thierry-Mieg Pierre F Ray 《Asian Journal of Andrology》 SCIE CAS CSCD 2022年第3期243-247,共5页
Thanks to tremendous advances in sequencing technologies and in particular to whole exome sequencing(WES),many genes have now been linked to severe sperm defects.A precise genetic diagnosis is obtained for a minority ... Thanks to tremendous advances in sequencing technologies and in particular to whole exome sequencing(WES),many genes have now been linked to severe sperm defects.A precise genetic diagnosis is obtained for a minority of patients and only for the most severe defects like azoospermia or macrozoospermia which is very often due to defects in the aurora kinase C(AURKC)gene.Here,we studied a subject with a severe oligozoospermia and a phenotypic diagnosis of macrozoospermia.AURKC analysis did not reveal any deleterious variant.WES was then initiated which permitted to identify a homozygous loss of function variant in the zinc finger MYND-type containing 15(ZMYND15)gene.ZMYND15 has been described to serve as a switch for haploid gene expression,and mice devoid of ZMYND15 were shown to be sterile due to nonobstructive azoospermia(NOA).In man,ZMYND15 has been associated with NOA and severe oligozoospermia.We confirm here that the presence of a bi-allelic ZMYND15 variant induces a severe oligozoospermia.In addition,we show that severe oligozoospermia can be associated macrozoospermia,and that a phenotypic misdiagnosis is possible,potentially delaying the genetic diagnosis.In conclusion,genetic defects in ZMYND15 can induce complete NOA or severe oligozoospermia associated with a very severe teratozoospermia.In our experience,severe oligozoospermia is often associated with severe teratozoospermia and can sometimes be misinterpreted as macrozoospermia or globozoospermia.In these instances,specific AURKC or dpy-19 like 2(DPY19L2)diagnosis is usually negative and we recommend the direct use of a pan-genomic techniques such as WES. 展开更多
关键词 AZOOSPERMIA gene defect macrozoospermia male infertility
原文传递
Cloning of the Full-length cDNA of the Wheat Involved in Salt Stress:Root Hair Defective 3 Gene (RHD3) 被引量:2
4
作者 LeiSHAN Shuang-YiZHAO Guang-MinXIA 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第7期881-891,共11页
: The full-length cDNA of the wheat (Triticum aestivum L.) root hair defective 3 gene (RHD3) has been cloned from the salt-tolerant hybrid wheat variety Shanrong No. 3 (Za3) using the mRNA differential display and 5’... : The full-length cDNA of the wheat (Triticum aestivum L.) root hair defective 3 gene (RHD3) has been cloned from the salt-tolerant hybrid wheat variety Shanrong No. 3 (Za3) using the mRNA differential display and 5’rapid amplification of cDNA ends (RACE) methods. Analysis of the amino acid sequence deduced from the wheat RHD3, gene shows that two conservative GTP-binding motifs, namely GXXXXGKS and DXXG, in eukaryotes also exist at the N-terminal of wheat RHD3. In addition, an 18 amino acid residue transmembrane domain, namely FYLAVMFVVFLVGKAIWV, exists at positions 701—718 of the C-terminal of the deduced protein of wheat RHD3 obtained, but this domain is absent in another three proteins aligned, including rice RHD3, Arabidopsis RHD3, and yeast homologue SEY1. Northern blot revealed that transcription of the wheat RHD3, gene is down-regulated in both the salt-tolerant line and in JN177 under saline stress. A possible stress-responsive mechanism for this gene is discussed. 展开更多
关键词 GTP-binding protein root hair defective 3 gene (RHD3) salt stress wheat salt-tolerant somatic hybrid
原文传递
Orotic Acid, More Than Just an Intermediate of Pyrimidine de novo Synthesis 被引量:3
5
作者 Monika L?ffler Elizabeth A.Carrey Elke Zameitat 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第5期207-219,共13页
It is timely to consider the many facets of the small molecule orotic acid (OA), which is well-known as an essential intermediate of pyrimidine de novo synthesis. In addition, it can be taken up by erythrocytes and ... It is timely to consider the many facets of the small molecule orotic acid (OA), which is well-known as an essential intermediate of pyrimidine de novo synthesis. In addition, it can be taken up by erythrocytes and hepatocytes for conversion into uridine and for use in the pyrimidine recycling pathway. We discuss the link between dietary orotate and fatty liver in rats, and the potential for the alleviation of neonatal hyperbilirubinaemia. We address the development of orotate derivatives for application as anti-pyrimidine drugs, and of com- plexes with metal ions and organic cations to assist therapies of metabolic syndromes. Recent genetic data link human Miller syndrome to defects in the dihydroorotate dehydrogenase (DHODH) gene, hence to depleted orotate production. Another defect in pyrimidine biosynthesis, the orotic aciduria arising in humans and cattle with a deficiency of UMP synthase (UMPS), has different symptoms. More recent work leads us to conclude that OA may have a role in regulating gene transcription. 展开更多
关键词 Orotic acid PYRIMIDINES Orotic aciduria Miller syndrome gene defects
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部