Objective To explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis. Methods HIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC an...Objective To explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis. Methods HIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC and an AIDS patient without ADC were cloned for sequence analysis. HIV-1 tat gene sequence alignment was performed by using CLUSTAL W and the phylogentic analysis was conducted by using Neighbor-joining with MEGA4 software. All tat genes were used to construct recombinant retroviral expressing vector MSCV-IRES-GFP/tat. The MSCV-IRES-GFP/tat was cotransfected into 293T cells with pCMV-VSV-G and pUMVC vectors to assemble the recombinant retrovirus. After infection of gliomas U87 cells with equal amount of the recombinant retrovirus, TNF-α, and IL-1β concentrations in the supernatant of U87 cells were determined with ELISA. Results HIV-1 tat genes derived from peripheral spleen and central basal ganglia of the AIDS patient with ADC and the other one without ADC exhibited genetic variations. Tat variations and amino acid mutation sites existed mainly at Tat protein core functional area (38-47aa). All Tat proteins could induce ug7 cells to produce TNF-α and IL-1β, but the level of IL-1β production was different among Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen. The level of Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen were obviously higher than that from the non-ADC patient's basal ganglia. Conclusion Tat protein core functional area (38-47aa) may serve as the key area of enhancing the secretion of IL-1β. This may be related with the neurotoxicity of HIV-1 Tat.展开更多
Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. T...Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.展开更多
The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual deman...The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.展开更多
AIMTo investigate the association of receptor for advanced glycation end products (RAGE) G82S and vascular endothelial growth factor (VEGF) -634 G/C gene polymorphisms with diabetic retinopathy (DR).METHODSOur cross-s...AIMTo investigate the association of receptor for advanced glycation end products (RAGE) G82S and vascular endothelial growth factor (VEGF) -634 G/C gene polymorphisms with diabetic retinopathy (DR).METHODSOur cross-sectional study included 61 diabetic patients, 12 of them had proliferative diabetic retinopathy (PDR), 15 had non proliferative diabetic retinopathy (NPDR), 34 had no diabetic retinopathy (NDR) and 61 healthy controls. Participants were tested for RAGE G82S and VEGF -634 G/C polymorphisms by polymerase chain reaction-restriction fragment length polymorphism.RESULTSWe found a significant association between VEGF -634 G/C polymorphism and PDR as PDR patients had increased incidence of VEGF -634 CC genotype compared to NDR patients [odds ratio for CC vs (GC+GG)=6.5, 95% CI=1.5-27.8, P=0.021]. Also VEGF -634 CC genotype and C allele were significantly higher in the PDR than in NPDR patients, which is a novel finding in our study (P=0.024, 0.009 respectively). The mean triglycerides level was significantly higher in diabetic patients with CC genotype (P=0.01) as compared to patients with other genotypes. All cases and control subjects were of the same heterozygous RAGE 82G/S genotype.CONCLUSIONPatients carrying VEGF -634 C polymorphism have a higher risk of PDR development, so VEGF -634 G/C polymorphism could be used as a predictive marker for PDR in diabetic patients. We could not find a significant association between RAGE G82S polymorphism and DR.展开更多
To investigate the effect of P53 protein accumulation and p53 gene mutation in the pathogenesis of glioma and to study the role of MDM2, P53 and P16 protein in glioma formation and progression and their relationship w...To investigate the effect of P53 protein accumulation and p53 gene mutation in the pathogenesis of glioma and to study the role of MDM2, P53 and P16 protein in glioma formation and progression and their relationship with each other, LSAB immunohistochemical staining method and non-isotopic PCR-SSCP techniques were used to detect the expression of MDM2, P53 and P16 protein and p53 gene mutation in 48 cases of gliomas. The results showed that the positive expression rate of MDM2, P53 and the negative rate of P16 was 22.9 %, 41.7 % and 60.4 %, respectively. The latter two in high grade (grade Ⅲ , Ⅳ) gliomas had a significantly higher rate than in the low grade (grade Ⅱ ) gliomas. Moreover, the co-expression of MDM2 and P53 protein was confirmed in only 1 of 48 cases. No significant difference was found in the rate of the expression of MDM2 between high grade and low grade gliomas (P〉0.1) . PCR-SSCP results showed that mutation of 5 --8 exons of p53 gene was detected in 17 out of 48 cases (35.42 %) . Mutation was detected in 16 of 20 cases of positive p53 expression, and another one was detected in 28 cases of negative expression cases. The correlation between p53 mutation and p53 immunopositivity was observed in 89.6 % of the cases. P53 gene mutation and the level of MDM2, P53 and PI6 protein were not related to age, gender of the patients, tumor location and size. It is concluded that the mutation of p53 and deletion of p16 might play important roles in the tumorigenesis of gliomas and it was significantly associated with the grade of tumor differentiation. P53 protein accumulation can indirectly reflect p53 mutation. MDM2 amplification and overexpression might be an early event in the growth of human gliomas.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
The main purpose of this study was to detect an association of cytoplasmic signal transducers and activators of transcription-1 (STAT1) with milk production traits in 472 Holstein and 283 Jersey cattle breeds of Tur...The main purpose of this study was to detect an association of cytoplasmic signal transducers and activators of transcription-1 (STAT1) with milk production traits in 472 Holstein and 283 Jersey cattle breeds of Turkey. This gene, located on chromosome 2, was chosen due to its role on development of mammary gland. A polymorphism of selected 314 bp allele fragment was detected by the restriction fragment length polymorphism analysis of polymerase chain reaction-amplified fragments (PCR-RFLP) method and also confirmed by DNA sequencing. The association tests were conducted between STAT1 genotypes and some economically important dairy traits. The genotypes for C/T as a single nucleotide polymorphism (SNP) were identified at interval 60 cM to 63 cM. The effects of STAT1 gene on milk production traits were not significant in Holstein cows, although animals with CT genotypes showed fairly close to significant value for the corrected 305 d milk yield. However, Jersey cows with/7" genotype were 2.07 kg higher for test-day milk yield (P 〈 0.05), 0.13 kg for fat yield (P 〈 0.01) and 0.07 kg for protein yield (P 〈 0.05) compared with animals having CC and CT genotypes. Definitely, the further research should be conducted to search this gene intensively with larger samples to identify polymorphism and any association between the economically important traits and genotypic class in Holstein cows. Finally, based on the findings, it was concluded that STATI gene might be used as a potential candidate gene to improve milk yield and milk fat and protein contents in dairy cows breeding programs.展开更多
In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selen...In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance展开更多
Chinese traditional medicine Danshen is the radix of the perennial herbs of Salvia miltiorrhiza Bunge, which has a variety of pharmacological effects and is traditionally and extensively applied clinically to treat ca...Chinese traditional medicine Danshen is the radix of the perennial herbs of Salvia miltiorrhiza Bunge, which has a variety of pharmacological effects and is traditionally and extensively applied clinically to treat cardiovascular disorders. In this research, the genomic genes for tyrosine aminotransferase (TAT) of 38 cultivated populations of Danshen in China were cloned and bioinformatic analyses were conducted to reveal its genetic diversity and phylogeny. The full-length SmTAT was 2296 - 2444 bp including 6 exons (encoding 411 amino acids) and 5 introns. Overall, the SmTAT genes in cultivated Danshen populations are highly conserved with a relative low level of genetic diversity. The spliced exons (1236 bp) had 23 SNP variations with a rate of 1.86%, of which 22 occurred in the white flower S. miltiorrhiza Bge.f.alba population (W-SCHY-W-1) and led to 5 amino acid variations. The entire 290 SNP variations with a rate of 24% in the 5 introns occurred exclusively in W-SCHY-W-1. Phylogenetic trees based on the full-length, combined introns, the spliced exons, and the deduced amino acid sequences of SmTAT all showed a two-clade basic structure with W-SCHY-W-1 uniquely standing alone. The SmTAT gene of the white flower population (W-SCHY-W-1) is unique and especially rich in variations. The first time clarified genomic SmTAT gene structure and genetic diversity in cultivated Danshen populations laid an excellent foundation for further studies on the biosynthesis of bioactives and the molecular breeding of Danshen as well as in plant tyrosine metabolism.展开更多
Background Proteins or peptides can be directly transferred into cells when covalently linked to protein transduction domains (PTDs). TAT is one of the most widely studied PTDs. The effect of fusion protein TAT and ...Background Proteins or peptides can be directly transferred into cells when covalently linked to protein transduction domains (PTDs). TAT is one of the most widely studied PTDs. The effect of fusion protein TAT and heme oxygenase-1 (HO-1) on liver sinusoidal endothelial cells (SECs) apoptosis during cold storage is unknown. The present study aimed to determine whether fusion protein TAT-HO-1 would transduce efficiently into liver during cold storage, and, if so, to determine whether TAT-HO-1 would attenuate SECs apoptosis during preservation injury in rat. Methods Livers of Sprague-Dawley rats were harvested and randomly assigned to group 1 (HTK solution) and group 2 (HTK solution containing TAT-HO-1 fusion protein) according to the type of the preservation solution. The transduction efficiency of TAT-HO-1 was examined and the impairment of SECs was assessed during the period of cold storage followed by 1 hour of reperfusion. Results TAT-HO-1 can transduce efficiently into liver during cold storage. A significantly lower apoptotic index of SECs was observed in group 2, at 6, 12 and 18 hours of cold storage after 1 hour reperfusion, when compared with group 1. TAT-HO-1 reduced HA and ET levels in liver at each time point. Both Bcl-2 and Bax protein were expressed in hepatocytes and SECs at the periphery of the sinusoidal space. Moreover, higher Bcl-2 expression and lower Bax expression were observed in group 2. Conclusions TAT-HO-1 can transduce efficiently into rat livers and shows a protective effect on SECs by attenuating apoptosis during cold ischemia/reperfusion injury. Protein transduction will be a novel therapeutic strategy to reduce the risk of preservation injury in liver transplantation.展开更多
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz...Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.展开更多
目的:将HIV-1的转录反式激活蛋白(trans-activator of transcription protein,TAT)中的片段短肽(RKKRRQRRR)偶联于聚乙烯亚胺-β-环糊精(polyethylenimine-β-cyclodextrin,PEI-β-CyD)聚合物,构建出低毒性、高转染率的新型基因载体。方...目的:将HIV-1的转录反式激活蛋白(trans-activator of transcription protein,TAT)中的片段短肽(RKKRRQRRR)偶联于聚乙烯亚胺-β-环糊精(polyethylenimine-β-cyclodextrin,PEI-β-CyD)聚合物,构建出低毒性、高转染率的新型基因载体。方法:β-环糊精(β-CyD)和低分子量树枝状聚乙烯亚胺(PEI600)通过羰基二咪唑(1,1’-carbonyldiim idazole,CDI)聚合形成骨架结构,通过琥珀酰亚胺-3-(2-嘧啶二硫)丙酸酯[N-succinimidy-3-(2-pyridyldithio)propionate,SPDP]将TAT短肽偶联于PEI-β-CyD,构成新的聚合物TAT-PEI-β-CyD。采用1H-NMR和FT-IR对聚合物进行化学结构表征;凝胶电泳阻滞实验、粒径测定和透射电镜观察TAT-PEI-β-CyD对DNA的浓缩能力,以及浓缩质粒DNA后颗粒形态和粒径大小;MTT法测定载体在A293和B16细胞上的毒性,并对A293和B16细胞进行体外细胞转染实验,以PEI25kDa作为对照。结果:1H-NMR和FT-IR结果显示,TAT短肽已成功偶联到PEI-β-CyD。凝胶电泳阻滞试验显示,TAT-PEI-β-CyD在N/P为4∶1时可以完全阻滞DNA的迁移。粒径测定结果和透射电镜图像表明,TAT-PEI-β-CyD/pDNA(N/P=30∶1)复合物粒径在100nm左右。细胞毒性实验表明,在B16和A293两种不同细胞中,聚合物毒性低于PEI25kDa。体外转染结果表明,在N/P为30∶1时,聚合物在A293、B16和B16BL6细胞中的基因转染效率最高;TAT短肽的偶联能提高PEI-β-CyD在B16、B16BL6细胞上的基因转染效率。结论:实验成功构建了TAT短肽修饰的PEI-β-CyD新型基因载体。该载体毒性低,基因转染效率高。展开更多
基金supported by the Science&Technology Development Program of Shandong Province(Grant No.2007GG30002003)
文摘Objective To explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis. Methods HIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC and an AIDS patient without ADC were cloned for sequence analysis. HIV-1 tat gene sequence alignment was performed by using CLUSTAL W and the phylogentic analysis was conducted by using Neighbor-joining with MEGA4 software. All tat genes were used to construct recombinant retroviral expressing vector MSCV-IRES-GFP/tat. The MSCV-IRES-GFP/tat was cotransfected into 293T cells with pCMV-VSV-G and pUMVC vectors to assemble the recombinant retrovirus. After infection of gliomas U87 cells with equal amount of the recombinant retrovirus, TNF-α, and IL-1β concentrations in the supernatant of U87 cells were determined with ELISA. Results HIV-1 tat genes derived from peripheral spleen and central basal ganglia of the AIDS patient with ADC and the other one without ADC exhibited genetic variations. Tat variations and amino acid mutation sites existed mainly at Tat protein core functional area (38-47aa). All Tat proteins could induce ug7 cells to produce TNF-α and IL-1β, but the level of IL-1β production was different among Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen. The level of Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen were obviously higher than that from the non-ADC patient's basal ganglia. Conclusion Tat protein core functional area (38-47aa) may serve as the key area of enhancing the secretion of IL-1β. This may be related with the neurotoxicity of HIV-1 Tat.
基金This work was supported by a grant fromthe International Atomic Energy Agency (IAEA) (grantNo: 12510/R1) a grant from the Chinese NationalNatural Science Foundation (grant No: 30400120)
文摘Although the endogenous function of Tat has been elucidated in the past twenty years, the study of its exogenous activity has been hampered due to the difficulty of large scale preparation of the active Tat protein. To express the full-length Tat protein in E.coli, the tat gene was cloned from an HIV infected patient by overlapping PCR. Rare codon usage analysis showed that rare E.coli codons, especially consecutive rare codons for Arg, account for 14% (14 of 101) rare E.coli codons in the tat gene. The expression of the HIV-1 tat gene was verified to be very poor in strain BL21 (DE3) due to the abundance of rare codons; however, tat gene expression was found to be very efficient in the host strain of Rosetta-gami B (DE3), which was supplemented with six rare tRNAs for Arg, Leu, Ile and Pro. Subsequent purification revealed that the proteins are soluble and unusually, the tagged Tat can form dimers independent of cystine disulfide bonds. The purity, integrity and molecular weight of the Tat protein were demonstrated by MALDI-TOF mass spectrometry. Reporter gene activating assay was further confirmed by investigating the transactivation activity of the recombinant Tat protein. Our improved strategy for efficient high level expression and purification of soluble Tat protein has paved the way to fully investigate its exogenous function.
基金Supported by National Key Technology R&D Program,China(Grant No.2015BAH21F01)National 111 Project,China(Grant No.B13044)
文摘The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.
文摘AIMTo investigate the association of receptor for advanced glycation end products (RAGE) G82S and vascular endothelial growth factor (VEGF) -634 G/C gene polymorphisms with diabetic retinopathy (DR).METHODSOur cross-sectional study included 61 diabetic patients, 12 of them had proliferative diabetic retinopathy (PDR), 15 had non proliferative diabetic retinopathy (NPDR), 34 had no diabetic retinopathy (NDR) and 61 healthy controls. Participants were tested for RAGE G82S and VEGF -634 G/C polymorphisms by polymerase chain reaction-restriction fragment length polymorphism.RESULTSWe found a significant association between VEGF -634 G/C polymorphism and PDR as PDR patients had increased incidence of VEGF -634 CC genotype compared to NDR patients [odds ratio for CC vs (GC+GG)=6.5, 95% CI=1.5-27.8, P=0.021]. Also VEGF -634 CC genotype and C allele were significantly higher in the PDR than in NPDR patients, which is a novel finding in our study (P=0.024, 0.009 respectively). The mean triglycerides level was significantly higher in diabetic patients with CC genotype (P=0.01) as compared to patients with other genotypes. All cases and control subjects were of the same heterozygous RAGE 82G/S genotype.CONCLUSIONPatients carrying VEGF -634 C polymorphism have a higher risk of PDR development, so VEGF -634 G/C polymorphism could be used as a predictive marker for PDR in diabetic patients. We could not find a significant association between RAGE G82S polymorphism and DR.
文摘To investigate the effect of P53 protein accumulation and p53 gene mutation in the pathogenesis of glioma and to study the role of MDM2, P53 and P16 protein in glioma formation and progression and their relationship with each other, LSAB immunohistochemical staining method and non-isotopic PCR-SSCP techniques were used to detect the expression of MDM2, P53 and P16 protein and p53 gene mutation in 48 cases of gliomas. The results showed that the positive expression rate of MDM2, P53 and the negative rate of P16 was 22.9 %, 41.7 % and 60.4 %, respectively. The latter two in high grade (grade Ⅲ , Ⅳ) gliomas had a significantly higher rate than in the low grade (grade Ⅱ ) gliomas. Moreover, the co-expression of MDM2 and P53 protein was confirmed in only 1 of 48 cases. No significant difference was found in the rate of the expression of MDM2 between high grade and low grade gliomas (P〉0.1) . PCR-SSCP results showed that mutation of 5 --8 exons of p53 gene was detected in 17 out of 48 cases (35.42 %) . Mutation was detected in 16 of 20 cases of positive p53 expression, and another one was detected in 28 cases of negative expression cases. The correlation between p53 mutation and p53 immunopositivity was observed in 89.6 % of the cases. P53 gene mutation and the level of MDM2, P53 and PI6 protein were not related to age, gender of the patients, tumor location and size. It is concluded that the mutation of p53 and deletion of p16 might play important roles in the tumorigenesis of gliomas and it was significantly associated with the grade of tumor differentiation. P53 protein accumulation can indirectly reflect p53 mutation. MDM2 amplification and overexpression might be an early event in the growth of human gliomas.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
文摘The main purpose of this study was to detect an association of cytoplasmic signal transducers and activators of transcription-1 (STAT1) with milk production traits in 472 Holstein and 283 Jersey cattle breeds of Turkey. This gene, located on chromosome 2, was chosen due to its role on development of mammary gland. A polymorphism of selected 314 bp allele fragment was detected by the restriction fragment length polymorphism analysis of polymerase chain reaction-amplified fragments (PCR-RFLP) method and also confirmed by DNA sequencing. The association tests were conducted between STAT1 genotypes and some economically important dairy traits. The genotypes for C/T as a single nucleotide polymorphism (SNP) were identified at interval 60 cM to 63 cM. The effects of STAT1 gene on milk production traits were not significant in Holstein cows, although animals with CT genotypes showed fairly close to significant value for the corrected 305 d milk yield. However, Jersey cows with/7" genotype were 2.07 kg higher for test-day milk yield (P 〈 0.05), 0.13 kg for fat yield (P 〈 0.01) and 0.07 kg for protein yield (P 〈 0.05) compared with animals having CC and CT genotypes. Definitely, the further research should be conducted to search this gene intensively with larger samples to identify polymorphism and any association between the economically important traits and genotypic class in Holstein cows. Finally, based on the findings, it was concluded that STATI gene might be used as a potential candidate gene to improve milk yield and milk fat and protein contents in dairy cows breeding programs.
文摘In the blood fluke Schistosoma mansoni a functionally active, monomeric, phospholipid hydroperoxide glutathione peroxidase (PHGPx) has been purified and characterized. This enzyme contains a catalytically active selenocysteine. The protein has been shown to be the product of a cloned gene, previously referred to as a glutathione peroxidase gene. S. mansoni PHGPx has been found 5 times more abundant in female than in male worm extract. As in vertebrate PHGPx, homology alignment indicates that the residues involved in the glutathione binding by the tetrameric cellular glutathione peroxidase are mutated in the S. mansoni enzyme. Thus, this aspect appears a landmark of the PHGPx-type of glutathione peroxidases,which might be of functional relevance
文摘Chinese traditional medicine Danshen is the radix of the perennial herbs of Salvia miltiorrhiza Bunge, which has a variety of pharmacological effects and is traditionally and extensively applied clinically to treat cardiovascular disorders. In this research, the genomic genes for tyrosine aminotransferase (TAT) of 38 cultivated populations of Danshen in China were cloned and bioinformatic analyses were conducted to reveal its genetic diversity and phylogeny. The full-length SmTAT was 2296 - 2444 bp including 6 exons (encoding 411 amino acids) and 5 introns. Overall, the SmTAT genes in cultivated Danshen populations are highly conserved with a relative low level of genetic diversity. The spliced exons (1236 bp) had 23 SNP variations with a rate of 1.86%, of which 22 occurred in the white flower S. miltiorrhiza Bge.f.alba population (W-SCHY-W-1) and led to 5 amino acid variations. The entire 290 SNP variations with a rate of 24% in the 5 introns occurred exclusively in W-SCHY-W-1. Phylogenetic trees based on the full-length, combined introns, the spliced exons, and the deduced amino acid sequences of SmTAT all showed a two-clade basic structure with W-SCHY-W-1 uniquely standing alone. The SmTAT gene of the white flower population (W-SCHY-W-1) is unique and especially rich in variations. The first time clarified genomic SmTAT gene structure and genetic diversity in cultivated Danshen populations laid an excellent foundation for further studies on the biosynthesis of bioactives and the molecular breeding of Danshen as well as in plant tyrosine metabolism.
基金This study was supported by a grant from National Natural Science Foundation of China (No. 30672024).
文摘Background Proteins or peptides can be directly transferred into cells when covalently linked to protein transduction domains (PTDs). TAT is one of the most widely studied PTDs. The effect of fusion protein TAT and heme oxygenase-1 (HO-1) on liver sinusoidal endothelial cells (SECs) apoptosis during cold storage is unknown. The present study aimed to determine whether fusion protein TAT-HO-1 would transduce efficiently into liver during cold storage, and, if so, to determine whether TAT-HO-1 would attenuate SECs apoptosis during preservation injury in rat. Methods Livers of Sprague-Dawley rats were harvested and randomly assigned to group 1 (HTK solution) and group 2 (HTK solution containing TAT-HO-1 fusion protein) according to the type of the preservation solution. The transduction efficiency of TAT-HO-1 was examined and the impairment of SECs was assessed during the period of cold storage followed by 1 hour of reperfusion. Results TAT-HO-1 can transduce efficiently into liver during cold storage. A significantly lower apoptotic index of SECs was observed in group 2, at 6, 12 and 18 hours of cold storage after 1 hour reperfusion, when compared with group 1. TAT-HO-1 reduced HA and ET levels in liver at each time point. Both Bcl-2 and Bax protein were expressed in hepatocytes and SECs at the periphery of the sinusoidal space. Moreover, higher Bcl-2 expression and lower Bax expression were observed in group 2. Conclusions TAT-HO-1 can transduce efficiently into rat livers and shows a protective effect on SECs by attenuating apoptosis during cold ischemia/reperfusion injury. Protein transduction will be a novel therapeutic strategy to reduce the risk of preservation injury in liver transplantation.
基金This work was funded by Ningxia Hui Autonomous Region Key Research and Development Project(2021BEF02004),Central Finance Forestry Reform and Development Fund“Forest Seed Cultivation”.
文摘Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.
文摘目的:将HIV-1的转录反式激活蛋白(trans-activator of transcription protein,TAT)中的片段短肽(RKKRRQRRR)偶联于聚乙烯亚胺-β-环糊精(polyethylenimine-β-cyclodextrin,PEI-β-CyD)聚合物,构建出低毒性、高转染率的新型基因载体。方法:β-环糊精(β-CyD)和低分子量树枝状聚乙烯亚胺(PEI600)通过羰基二咪唑(1,1’-carbonyldiim idazole,CDI)聚合形成骨架结构,通过琥珀酰亚胺-3-(2-嘧啶二硫)丙酸酯[N-succinimidy-3-(2-pyridyldithio)propionate,SPDP]将TAT短肽偶联于PEI-β-CyD,构成新的聚合物TAT-PEI-β-CyD。采用1H-NMR和FT-IR对聚合物进行化学结构表征;凝胶电泳阻滞实验、粒径测定和透射电镜观察TAT-PEI-β-CyD对DNA的浓缩能力,以及浓缩质粒DNA后颗粒形态和粒径大小;MTT法测定载体在A293和B16细胞上的毒性,并对A293和B16细胞进行体外细胞转染实验,以PEI25kDa作为对照。结果:1H-NMR和FT-IR结果显示,TAT短肽已成功偶联到PEI-β-CyD。凝胶电泳阻滞试验显示,TAT-PEI-β-CyD在N/P为4∶1时可以完全阻滞DNA的迁移。粒径测定结果和透射电镜图像表明,TAT-PEI-β-CyD/pDNA(N/P=30∶1)复合物粒径在100nm左右。细胞毒性实验表明,在B16和A293两种不同细胞中,聚合物毒性低于PEI25kDa。体外转染结果表明,在N/P为30∶1时,聚合物在A293、B16和B16BL6细胞中的基因转染效率最高;TAT短肽的偶联能提高PEI-β-CyD在B16、B16BL6细胞上的基因转染效率。结论:实验成功构建了TAT短肽修饰的PEI-β-CyD新型基因载体。该载体毒性低,基因转染效率高。