Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
Hypotrichs are one of the highly differentiated ciliated lineages which play important roles in ecological, environmental,evolutionary and basic biological studies. In the present study, we investigated the living cha...Hypotrichs are one of the highly differentiated ciliated lineages which play important roles in ecological, environmental,evolutionary and basic biological studies. In the present study, we investigated the living characteristics, infraciliature, nuclear apparatus, ontogenesis and phylogenetic position of a marine hypotrichous ciliate, Apokeronopsis wrighti Long et al., 2008, which was isolated from coastal waters in Shenzhen, China. The new isolate resembles the type population in terms of morphological characteristics, morphometrics, and SSU rRNA gene sequence that is with a 99.7% similarity. Ontogenesis of A. wrighti is characterized by oral primordium for the proter as well as marginal and dorsal kineties anlagen in both filial products formed de novo, and the cirral row arranged along the paroral and endoral arises from several anterior frontoventral-transverse cirral streaks. Phylogenetic analyses based on SSU and concatenated gene data suggest that five species of Apokeronopsis form a monophyletic clade, and the genus Apokeronopsis is closely related to Thigmokeronopsis and Metaurostylopsis.展开更多
Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the...Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.展开更多
Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular...Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
This paper proposes a new method to reduce the dimensionality of input and output spaces in DEA models. The method is based on Yanai’s Generalized Coefficient of Determination and on the concept of pseudo-rank of a m...This paper proposes a new method to reduce the dimensionality of input and output spaces in DEA models. The method is based on Yanai’s Generalized Coefficient of Determination and on the concept of pseudo-rank of a matrix. In addition, the paper suggests a rule to determine the cardinality of the subset of selected variables in a way to gain the maximal discretionary power and to suffer a minimal informational loss.展开更多
Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has ev...Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has evolved as a potential therapeutic option for treating Alzheimer’s disease,owing to its rapid advancement over the recent decade.Small interfering ribonucleic acid has recently garnered considerable attention in gene therapy owing to its ability to down-regulate genes with high sequence specificity and an almost limitless number of therapeutic targets,including those that were once considered undruggable.However,lackluster cellular uptake and the destabilization of small interfering ribonucleic acid in its biological environment restrict its therapeutic application,necessitating the development of a vector that can safeguard the genetic material from early destruction within the bloodstream while effectively delivering therapeutic genes across the bloodbrain barrier.Nanotechnology has emerged as a possible solution,and several delivery systems utilizing nanoparticles have been shown to bypass key challenges regarding small interfering ribonucleic acid delivery.By reducing the enzymatic breakdown of genetic components,nanomaterials as gene carriers have considerably enhanced the efficiency of gene therapy.Liposomes,polymeric nanoparticles,magnetic nanoparticles,dendrimers,and micelles are examples of nanocarriers that have been designed,and each has its own set of features.Furthermore,recent advances in the specific delivery of neurotrophic compounds via gene therapy have provided promising results in relation to augmenting cognitive abilities.In this paper,we highlight the use of different nanocarriers in targeted gene delivery and small interfering ribonucleic acid-mediated gene silencing as a potential platform for treating Alzheimer’s disease.展开更多
Sea cucumber Holothuria leucospilota is one of the most widespread tropical holothurian species.In this study,eukaryotic organism composition in foregut and hindgut contents of H.leucospilota and surrounding sediments...Sea cucumber Holothuria leucospilota is one of the most widespread tropical holothurian species.In this study,eukaryotic organism composition in foregut and hindgut contents of H.leucospilota and surrounding sediments was assessed by 18S rRNA gene high-throughput sequencing.Eukaryon richness and diversity in the habitat sediments were significantly higher than those in foregut and hindgut contents of the sea cucumbers(P<0.05).The foregut content group,hindgut content group,and marine sediment group sequences were respectively assigned to 18.20±1.32,19.40±1.03,and 21.80±0.37 phyla.In the foregut contents,Nematoda(20.18%±9.59%),Mollusca(16.12%±10.49%),Chlorophyta(10.04%±4.85%),Annelida(8.72%±10.93%),Streptophyta(8.46%±4.65%),and Diatomea(5.99%±2.01%)were the predominant phyla,which showed the eukaryotic food sources of H.leucospilota were primarily belong to the above phyla.The predominant phyla in the hindgut contents were Streptophyta(45.55%±17.32%),Mollusca(4.93%±4.82%),Arthropoda(5.37%±3.08%),Diatomea(3.88%±2.34%),and Chlorophyta(3.79%±1.59%);and Annelida(37.80%±17.00%),Arthropoda(24.49%±12.53%),Platyhelminthes(7.14%±3.02%),Nematoda(4.14%±0.91%),and Diatomea(5.11%±1.35%)had large contents in the sediments.The comparatively high content of Paris genus in phylum Streptophyta in foregut contents indicated that land plants were one of the primary food sources of H.leucospilota,however the significantly higher contents of Streptophyta in hindgut contents than that in foregut contents might suggest a large part of the terrigenous detritus ingested might not be digested by H.leucospilota.UPGMA and PCoA analysis revealed that eukaryotic organism composition differed significantly between foregut contents of H.leucospilota and ambient sediments,indicating selective feeding feature of H.leucospilota.This study provided useful references for artificial feed of tropical sea cucumbers and enhanced understanding of the ecological roles of detritus-feeding macrobenthos.展开更多
The influence of density,foliage and stem flexibility on the roughness coefficients under unsubmerged conditions,such as Manning's n,is investigated experimentally.An instrumentation system has been developed for mea...The influence of density,foliage and stem flexibility on the roughness coefficients under unsubmerged conditions,such as Manning's n,is investigated experimentally.An instrumentation system has been developed for measuring the flow rate ranging from 0.1 to 0.3 L/s under the condition of different artificial foliated reeds.Based on the experimental results,the influence on the relationship between n with different density,foliage,flexibility and flow depth is discussed.It is found that the foliage and the density are the important factors affecting Manning's n.At a range of relatively low velocity and relatively large bending stiffness of stem,Manning's n is not influenced significanthy by the flexibility of stem.展开更多
Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to ...Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to calculate the Skempton's coefficient B according to the relationship between water level and tidal strain. With this method we can get the value of B without the earthquake occurrence, which can provide the high frequency waves for research. Besides, we can also get the in-suit Skempton's coefficient B without the experiment of rock physics. In addition, we analyze the observed data of Changping station recorded in groundwater monitoring network (abv., GMN) before and after the Wenchuan Ms8.0 with this method, and find out there's a slight change of the value of B after the seismic waves passed by, which implies that the propagation of seismic waves may have brought some variations to the poroelastic medium of the well.展开更多
The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the form...The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.展开更多
Gene expression(GE)classification is a research trend as it has been used to diagnose and prognosis many diseases.Employing machine learning(ML)in the prediction of many diseases based on GE data has been a flourishin...Gene expression(GE)classification is a research trend as it has been used to diagnose and prognosis many diseases.Employing machine learning(ML)in the prediction of many diseases based on GE data has been a flourishing research area.However,some diseases,like Alzheimer’s disease(AD),have not received considerable attention,probably owing to data scarcity obstacles.In this work,we shed light on the prediction of AD from GE data accurately using ML.Our approach consists of four phases:preprocessing,gene selection(GS),classification,and performance validation.In the preprocessing phase,gene columns are preprocessed identically.In the GS phase,a hybrid filtering method and embedded method are used.In the classification phase,three ML models are implemented using the bare minimum of the chosen genes obtained from the previous phase.The final phase is to validate the performance of these classifiers using different metrics.The crux of this article is to select the most informative genes from the hybrid method,and the best ML technique to predict AD using this minimal set of genes.Five different datasets are used to achieve our goal.We predict AD with impressive values forMultiLayer Perceptron(MLP)classifier which has the best performance metrics in four datasets,and the Support Vector Machine(SVM)achieves the highest performance values in only one dataset.We assessed the classifiers using sevenmetrics;and received impressive results,allowing for a credible performance rating.The metrics values we obtain in our study lie in the range[.97,.99]for the accuracy(Acc),[.97,.99]for F1-score,[.94,.98]for kappa index,[.97,.99]for area under curve(AUC),[.95,1]for precision,[.98,.99]for sensitivity(recall),and[.98,1]for specificity.With these results,the proposed approach outperforms recent interesting results.With these results,the proposed approach outperforms recent interesting results.展开更多
Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics,...Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.展开更多
Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desir...Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desirable parents.The present study was carried out with six parents crossed in full diallel fashion and generated 30 F1 hybrids.These hybrids were evaluated in two replications in Randomized Block Design at Department of Cotton,TNAU for combining ability and gene action.Diallel analysis was carried out according to Griffing’s method-I(parents + F_(1) + reciprocals) and model-I and Hayman’s graphical approach by using INDOSTAT software.Results Analysis of variance for combining ability indicated that mean square values of GCA,SCA and reciprocals were highly significant for all the traits except for the uniformity index.RG763 and K12 showed highly positively significant GCA effects for most of the yield traits while PA838 and K12 for fibre quality traits,so they were found as best general combiners.PAIG379 × K12 and PDB29 × K12 for yield traits,and PDB29 × PA838,RG763 × PA838,and CNA1007 × RG763 cross combinations for fibre quality traits could be recommended for future breeding programms.Conclusion The results of both Griffing’s and Hayman’s approaches showed that non-additive gene action predominates as SCA variance was bigger than GCA variance,so heterosis breeding is thought to be a more fruitful option for enhancing GCA of many traits.展开更多
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
基金supported by the Natural Science Foundation of Shaanxi Province(Nos.2023-JC-QN-0214,2023JC-QN-0185)the Postdoctoral Science Foundation of Shaanxi Province(No.2023BSHEDZZ199)the Fundamental Research Funds for the Central Universities(No.GK202207019)。
文摘Hypotrichs are one of the highly differentiated ciliated lineages which play important roles in ecological, environmental,evolutionary and basic biological studies. In the present study, we investigated the living characteristics, infraciliature, nuclear apparatus, ontogenesis and phylogenetic position of a marine hypotrichous ciliate, Apokeronopsis wrighti Long et al., 2008, which was isolated from coastal waters in Shenzhen, China. The new isolate resembles the type population in terms of morphological characteristics, morphometrics, and SSU rRNA gene sequence that is with a 99.7% similarity. Ontogenesis of A. wrighti is characterized by oral primordium for the proter as well as marginal and dorsal kineties anlagen in both filial products formed de novo, and the cirral row arranged along the paroral and endoral arises from several anterior frontoventral-transverse cirral streaks. Phylogenetic analyses based on SSU and concatenated gene data suggest that five species of Apokeronopsis form a monophyletic clade, and the genus Apokeronopsis is closely related to Thigmokeronopsis and Metaurostylopsis.
文摘Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.
基金supported by the National Natural Science Foundation of China,No.82101340(to FJ).
文摘Parkinson’s disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such asα-synuclein in neurons.As one of the major intracellular degradation pathways,the autophagy-lysosome pathway plays an important role in eliminating these proteins.Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance ofα-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson’s disease.Moreover,multiple genes associated with the pathogenesis of Parkinson’s disease are intimately linked to alterations in the autophagy-lysosome pathway.Thus,this pathway appears to be a promising therapeutic target for treatment of Parkinson’s disease.In this review,we briefly introduce the machinery of autophagy.Then,we provide a description of the effects of Parkinson’s disease–related genes on the autophagy-lysosome pathway.Finally,we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy–lysosome pathway and their applications in Parkinson’s disease.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
文摘This paper proposes a new method to reduce the dimensionality of input and output spaces in DEA models. The method is based on Yanai’s Generalized Coefficient of Determination and on the concept of pseudo-rank of a matrix. In addition, the paper suggests a rule to determine the cardinality of the subset of selected variables in a way to gain the maximal discretionary power and to suffer a minimal informational loss.
基金supported by the Intramural Research Program National Institute on Aginq,NIH。
文摘Toxic aggregated amyloid-βaccumulation is a key pathogenic event in Alzheimer’s disease.Treatment approaches have focused on the suppression,deferral,or dispersion of amyloid-βfibers and plaques.Gene therapy has evolved as a potential therapeutic option for treating Alzheimer’s disease,owing to its rapid advancement over the recent decade.Small interfering ribonucleic acid has recently garnered considerable attention in gene therapy owing to its ability to down-regulate genes with high sequence specificity and an almost limitless number of therapeutic targets,including those that were once considered undruggable.However,lackluster cellular uptake and the destabilization of small interfering ribonucleic acid in its biological environment restrict its therapeutic application,necessitating the development of a vector that can safeguard the genetic material from early destruction within the bloodstream while effectively delivering therapeutic genes across the bloodbrain barrier.Nanotechnology has emerged as a possible solution,and several delivery systems utilizing nanoparticles have been shown to bypass key challenges regarding small interfering ribonucleic acid delivery.By reducing the enzymatic breakdown of genetic components,nanomaterials as gene carriers have considerably enhanced the efficiency of gene therapy.Liposomes,polymeric nanoparticles,magnetic nanoparticles,dendrimers,and micelles are examples of nanocarriers that have been designed,and each has its own set of features.Furthermore,recent advances in the specific delivery of neurotrophic compounds via gene therapy have provided promising results in relation to augmenting cognitive abilities.In this paper,we highlight the use of different nanocarriers in targeted gene delivery and small interfering ribonucleic acid-mediated gene silencing as a potential platform for treating Alzheimer’s disease.
基金Supported by the National Natural Science Foundation of China(Nos.42166005,42076097)the Hainan Provincial Key Research and Development Program(No.ZDYF2021XDNY130)+1 种基金the Natural Science Foundation of Hainan Province(No.321RC1023)the State Key Laboratory of Marine Resource Utilization in South China Sea Open Project(No.MRUKF2021008)。
文摘Sea cucumber Holothuria leucospilota is one of the most widespread tropical holothurian species.In this study,eukaryotic organism composition in foregut and hindgut contents of H.leucospilota and surrounding sediments was assessed by 18S rRNA gene high-throughput sequencing.Eukaryon richness and diversity in the habitat sediments were significantly higher than those in foregut and hindgut contents of the sea cucumbers(P<0.05).The foregut content group,hindgut content group,and marine sediment group sequences were respectively assigned to 18.20±1.32,19.40±1.03,and 21.80±0.37 phyla.In the foregut contents,Nematoda(20.18%±9.59%),Mollusca(16.12%±10.49%),Chlorophyta(10.04%±4.85%),Annelida(8.72%±10.93%),Streptophyta(8.46%±4.65%),and Diatomea(5.99%±2.01%)were the predominant phyla,which showed the eukaryotic food sources of H.leucospilota were primarily belong to the above phyla.The predominant phyla in the hindgut contents were Streptophyta(45.55%±17.32%),Mollusca(4.93%±4.82%),Arthropoda(5.37%±3.08%),Diatomea(3.88%±2.34%),and Chlorophyta(3.79%±1.59%);and Annelida(37.80%±17.00%),Arthropoda(24.49%±12.53%),Platyhelminthes(7.14%±3.02%),Nematoda(4.14%±0.91%),and Diatomea(5.11%±1.35%)had large contents in the sediments.The comparatively high content of Paris genus in phylum Streptophyta in foregut contents indicated that land plants were one of the primary food sources of H.leucospilota,however the significantly higher contents of Streptophyta in hindgut contents than that in foregut contents might suggest a large part of the terrigenous detritus ingested might not be digested by H.leucospilota.UPGMA and PCoA analysis revealed that eukaryotic organism composition differed significantly between foregut contents of H.leucospilota and ambient sediments,indicating selective feeding feature of H.leucospilota.This study provided useful references for artificial feed of tropical sea cucumbers and enhanced understanding of the ecological roles of detritus-feeding macrobenthos.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019UNESCO-IHE Partnership Research Fund (UPaRF) under contract No.60038881the National Natural Science Foundation of China under contract No.50939003
文摘The influence of density,foliage and stem flexibility on the roughness coefficients under unsubmerged conditions,such as Manning's n,is investigated experimentally.An instrumentation system has been developed for measuring the flow rate ranging from 0.1 to 0.3 L/s under the condition of different artificial foliated reeds.Based on the experimental results,the influence on the relationship between n with different density,foliage,flexibility and flow depth is discussed.It is found that the foliage and the density are the important factors affecting Manning's n.At a range of relatively low velocity and relatively large bending stiffness of stem,Manning's n is not influenced significanthy by the flexibility of stem.
基金supported by National Natural Science Foundation of China(40674024 and 40374019)
文摘Based on isotropie linear poroelastic theory and under the undrained condition, we summarize three equations connecting the Skempton's coefficient B with the groundwater level. After analysis, we propose a method to calculate the Skempton's coefficient B according to the relationship between water level and tidal strain. With this method we can get the value of B without the earthquake occurrence, which can provide the high frequency waves for research. Besides, we can also get the in-suit Skempton's coefficient B without the experiment of rock physics. In addition, we analyze the observed data of Changping station recorded in groundwater monitoring network (abv., GMN) before and after the Wenchuan Ms8.0 with this method, and find out there's a slight change of the value of B after the seismic waves passed by, which implies that the propagation of seismic waves may have brought some variations to the poroelastic medium of the well.
文摘The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.
文摘Gene expression(GE)classification is a research trend as it has been used to diagnose and prognosis many diseases.Employing machine learning(ML)in the prediction of many diseases based on GE data has been a flourishing research area.However,some diseases,like Alzheimer’s disease(AD),have not received considerable attention,probably owing to data scarcity obstacles.In this work,we shed light on the prediction of AD from GE data accurately using ML.Our approach consists of four phases:preprocessing,gene selection(GS),classification,and performance validation.In the preprocessing phase,gene columns are preprocessed identically.In the GS phase,a hybrid filtering method and embedded method are used.In the classification phase,three ML models are implemented using the bare minimum of the chosen genes obtained from the previous phase.The final phase is to validate the performance of these classifiers using different metrics.The crux of this article is to select the most informative genes from the hybrid method,and the best ML technique to predict AD using this minimal set of genes.Five different datasets are used to achieve our goal.We predict AD with impressive values forMultiLayer Perceptron(MLP)classifier which has the best performance metrics in four datasets,and the Support Vector Machine(SVM)achieves the highest performance values in only one dataset.We assessed the classifiers using sevenmetrics;and received impressive results,allowing for a credible performance rating.The metrics values we obtain in our study lie in the range[.97,.99]for the accuracy(Acc),[.97,.99]for F1-score,[.94,.98]for kappa index,[.97,.99]for area under curve(AUC),[.95,1]for precision,[.98,.99]for sensitivity(recall),and[.98,1]for specificity.With these results,the proposed approach outperforms recent interesting results.With these results,the proposed approach outperforms recent interesting results.
基金Project supported by the National Natural Science Foundation of China(Nos.51478435,11402150,and 11172268)
文摘Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.
文摘Background For the purpose of utilising hybrid vigour to produce possible hybrids with a suitable level of stability,the knowledge of gene activity and combining ability is a crucial prerequisite before choosing desirable parents.The present study was carried out with six parents crossed in full diallel fashion and generated 30 F1 hybrids.These hybrids were evaluated in two replications in Randomized Block Design at Department of Cotton,TNAU for combining ability and gene action.Diallel analysis was carried out according to Griffing’s method-I(parents + F_(1) + reciprocals) and model-I and Hayman’s graphical approach by using INDOSTAT software.Results Analysis of variance for combining ability indicated that mean square values of GCA,SCA and reciprocals were highly significant for all the traits except for the uniformity index.RG763 and K12 showed highly positively significant GCA effects for most of the yield traits while PA838 and K12 for fibre quality traits,so they were found as best general combiners.PAIG379 × K12 and PDB29 × K12 for yield traits,and PDB29 × PA838,RG763 × PA838,and CNA1007 × RG763 cross combinations for fibre quality traits could be recommended for future breeding programms.Conclusion The results of both Griffing’s and Hayman’s approaches showed that non-additive gene action predominates as SCA variance was bigger than GCA variance,so heterosis breeding is thought to be a more fruitful option for enhancing GCA of many traits.