期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Detecting Lags in Nonlinear Models Using General Mutual Information 被引量:1
1
作者 Wei GAO1,2, Zheng TIAN1,3 1. Department of Applied Mathematics, Northwest Polytechnical University, Shaanxi 710072, P. R. China 2. School of Statistics, Xi’an University of Finance & Economics, Shaanxi 710061, P. R. China 3. National Key Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, P. R. China 《Journal of Mathematical Research and Exposition》 CSCD 2010年第1期87-98,共12页
The general mutual information (GMI) and general conditional mutual information (GCMI) are considered to measure lag dependences in nonlinear time series. Both of the measures have the property of invariance with ... The general mutual information (GMI) and general conditional mutual information (GCMI) are considered to measure lag dependences in nonlinear time series. Both of the measures have the property of invariance with transform. The statistics based on GMI and GCMI are estimated using the correlation integral. Under the hypothesis of independent series, the estimators have Gaussian asymptotic distributions. Simulations applied to generated nonlinear series demonstrate that the methods appear to find frequently the correct lags. 展开更多
关键词 general mutual information general conditional mutual information nonlinear time series lag dependence.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部