The main purpose of the present paper is to examine the existence and local uniqueness of solutions of the implicit equations arising in the application of a weakly algebraically stable general linear methods to dissi...The main purpose of the present paper is to examine the existence and local uniqueness of solutions of the implicit equations arising in the application of a weakly algebraically stable general linear methods to dissipative dynamical systems, and to extend the existing relevant results of Runge-Kutta methods by Humphries and Stuart(1994). [ABSTRACT FROM AUTHOR]展开更多
Focuses on a study which presented some invariants and conservation laws of general linear methods applied to differential equation systems. Information on the quadratic invariants; Conservation of symplectic structur...Focuses on a study which presented some invariants and conservation laws of general linear methods applied to differential equation systems. Information on the quadratic invariants; Conservation of symplectic structure; Details on the multiple Runge-Kutta methods; Equations of the one-leg methods.展开更多
In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties...In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.展开更多
Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computati...Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computation of the global error estimate of algebraically and diagonally stable general linear methods; Implications of the results for the case of Runge-Kutta methods.展开更多
We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived...We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.展开更多
This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, l...This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.展开更多
基金a grant !(No. 19871070) from NSF of China a grant!(No. A757D9I0) from Academy of Mathematics and System Sciences, Academy o
文摘The main purpose of the present paper is to examine the existence and local uniqueness of solutions of the implicit equations arising in the application of a weakly algebraically stable general linear methods to dissipative dynamical systems, and to extend the existing relevant results of Runge-Kutta methods by Humphries and Stuart(1994). [ABSTRACT FROM AUTHOR]
基金NSF of China(No. 19871070), Wang Kuancheng Foundation for Rewarding thePostdoctors of Chinese Academy of Sciences and the Post
文摘Focuses on a study which presented some invariants and conservation laws of general linear methods applied to differential equation systems. Information on the quadratic invariants; Conservation of symplectic structure; Details on the multiple Runge-Kutta methods; Equations of the one-leg methods.
文摘In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.
基金the National Natural Science Fundation of China. (No. 19871086 & 10101027)
文摘Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computation of the global error estimate of algebraically and diagonally stable general linear methods; Implications of the results for the case of Runge-Kutta methods.
文摘We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.
基金supported by National Natural Science Foundation of China(Grant No.10671078)the Program for New Century Excellent Talents in University,the State Education Ministry of China. supported in part by E-Institutes of Shanghai Municipal Education Commission (No.E03004)+3 种基金National Natural Science Foundation of China(No.10671130)Shanghai Science and Technology Commission(No.06JC14092)Shuguang Project of Shanghai Municipal Education Commission(No.06SG45)the Shanghai Leading Academic Discipline Project(No.S30405)
文摘This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.