Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input...Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.展开更多
The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmosph...The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes.展开更多
A general regression neural network model,combined with an interative algorithm(GRNNI)using sparsely distributed samples and auxiliary environmental variables was proposed to predict both spatial distribution and vari...A general regression neural network model,combined with an interative algorithm(GRNNI)using sparsely distributed samples and auxiliary environmental variables was proposed to predict both spatial distribution and variability of soil organic matter(SOM)in a bamboo forest.The auxiliary environmental variables were:elevation,slope,mean annual temperature,mean annual precipitation,and normalized difference vegetation index.The prediction accuracy of this model was assessed via three accuracy indices,mean error(ME),mean absolute error(MAE),and root mean squared error(RMSE)for validation in sampling sites.Both the prediction accuracy and reliability of this model were compared to those of regression kriging(RK)and ordinary kriging(OK).The results show that the prediction accuracy of the GRNNI model was higher than that of both RK and OK.The three accuracy indices(ME,MAE,and RMSE)of the GRNNI model were lower than those of RK and OK.Relative improvements of RMSE of the GRNNI model compared with RK and OK were 13.6%and 17.5%,respectively.In addition,a more realistic spatial pattern of SOM was produced by the model because the GRNNI model was more suitable than multiple linear regression to capture the nonlinear relationship between SOM and the auxiliary environmental variables.Therefore,the GRNNI model can improve both prediction accuracy and reliability for determining spatial distribution and variability of SOM.展开更多
Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neu...Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neural network(GRNN),this article sets up a GRNN model for water level prediction.Case study indicates that this model,even with limited information,has satisfactory prediction accuracy,which,coupled with a simple model structure and relatively high calculation efficiency,mean a vast application prospect for the model.展开更多
基金Project(07JA790092) supported by the Research Grants from Humanities and Social Science Program of Ministry of Education of ChinaProject(10MR44) supported by the Fundamental Research Funds for the Central Universities in China
文摘Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.
基金Projects(U1231105,10878026)supported by the National Natural Science Foundation of China
文摘The general regression neural network(GRNN) model was proposed to model and predict the length of day(LOD) change, which has very complicated time-varying characteristics. Meanwhile, considering that the axial atmospheric angular momentum(AAM) function is tightly correlated with the LOD changes, it was introduced into the GRNN prediction model to further improve the accuracy of prediction. Experiments with the observational data of LOD changes show that the prediction accuracy of the GRNN model is 6.1% higher than that of BP network, and after introducing AAM function, the improvement of prediction accuracy further increases to 14.7%. The results show that the GRNN with AAM function is an effective prediction method for LOD changes.
基金The article is supported by National Key Research and Development Projects of P.R.China(No.2018YFD0600100).
文摘A general regression neural network model,combined with an interative algorithm(GRNNI)using sparsely distributed samples and auxiliary environmental variables was proposed to predict both spatial distribution and variability of soil organic matter(SOM)in a bamboo forest.The auxiliary environmental variables were:elevation,slope,mean annual temperature,mean annual precipitation,and normalized difference vegetation index.The prediction accuracy of this model was assessed via three accuracy indices,mean error(ME),mean absolute error(MAE),and root mean squared error(RMSE)for validation in sampling sites.Both the prediction accuracy and reliability of this model were compared to those of regression kriging(RK)and ordinary kriging(OK).The results show that the prediction accuracy of the GRNNI model was higher than that of both RK and OK.The three accuracy indices(ME,MAE,and RMSE)of the GRNNI model were lower than those of RK and OK.Relative improvements of RMSE of the GRNNI model compared with RK and OK were 13.6%and 17.5%,respectively.In addition,a more realistic spatial pattern of SOM was produced by the model because the GRNNI model was more suitable than multiple linear regression to capture the nonlinear relationship between SOM and the auxiliary environmental variables.Therefore,the GRNNI model can improve both prediction accuracy and reliability for determining spatial distribution and variability of SOM.
文摘Traditional methods for water table prediction have such defects as extensive calculation and reliance on the presupposition of a homogeneous and regular aquifer.Based on the fundamentals of the general regression neural network(GRNN),this article sets up a GRNN model for water level prediction.Case study indicates that this model,even with limited information,has satisfactory prediction accuracy,which,coupled with a simple model structure and relatively high calculation efficiency,mean a vast application prospect for the model.