期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Generative pre-trained transformers(GPT)-based automated data mining for building energy management:Advantages,limitations and the future 被引量:2
1
作者 Chaobo Zhang Jie Lu Yang Zhao 《Energy and Built Environment》 2024年第1期143-169,共27页
Advanced data mining methods have shown a promising capacity in building energy management.However,in the past decade,such methods are rarely applied in practice,since they highly rely on users to customize solutions ... Advanced data mining methods have shown a promising capacity in building energy management.However,in the past decade,such methods are rarely applied in practice,since they highly rely on users to customize solutions according to the characteristics of target building energy systems.Hence,the major barrier is that the practical applications of such methods remain laborious.It is necessary to enable computers to have the human-like ability to solve data mining tasks.Generative pre-trained transformers(GPT)might be capable of addressing this issue,as some GPT models such as GPT-3.5 and GPT-4 have shown powerful abilities on interaction with humans,code generation,and inference with common sense and domain knowledge.This study explores the potential of the most advanced GPT model(GPT-4)in three data mining scenarios of building energy management,i.e.,energy load prediction,fault diagnosis,and anomaly detection.A performance evaluation framework is proposed to verify the capabilities of GPT-4 on generating energy load prediction codes,diagnosing device faults,and detecting abnormal system operation patterns.It is demonstrated that GPT-4 can automatically solve most of the data mining tasks in this domain,which overcomes the barrier of practical applications of data mining methods in this domain.In the exploration of GPT-4,its advantages and limitations are also discussed comprehensively for revealing future research directions in this domain. 展开更多
关键词 ChatGPT GPT-4 Artificial general intelligence Data mining Building energy management
原文传递
J2项摄动下的远程拦截耗尽关机中制导律设计 被引量:9
2
作者 呼卫军 王欢 周军 《宇航学报》 EI CAS CSCD 北大核心 2017年第7期694-703,共10页
为实现远程高精度动能拦截,针对使用固态燃料发动机的拦截弹在强时间约束下的耗尽关机问题,本文设计一种基于通用能量管理(GEM)的闭环中制导律。该制导律首先考虑了地球非球形J2摄动项对弹道影响,改进Lambert问题求解算法,在小计算量的... 为实现远程高精度动能拦截,针对使用固态燃料发动机的拦截弹在强时间约束下的耗尽关机问题,本文设计一种基于通用能量管理(GEM)的闭环中制导律。该制导律首先考虑了地球非球形J2摄动项对弹道影响,改进Lambert问题求解算法,在小计算量的情况下修正了因地球扁率摄动在远程拦截长时段飞行过程中引起的需求速度求解偏差,将其精度提升一个数量级。然后在GEM基础上给出了一种能量调制角虚拟映射关系实现了能量调制初段指令平滑过渡,并改变近关机点推力定向策略解决了临近关机时指令发散问题。在制导过程中加速度计反馈环节的引入增强了对推进系统参数的鲁棒性。六自由度仿真表明,相比传统GEM制导律,该制导律精度更高,任务适应性强。 展开更多
关键词 通用能量管理(gem) Lambert问题 地球扁率 需求速度 虚拟映射
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部