全局游戏策略GGP(General Game Playing)旨在开发一种没有游戏经验支撑下能够精通各类游戏的人工智能。在原有强化学习算法研究的基础上,提出一种基于经验的简化学习方法,通过对游戏状态的筛选和游戏经验的归纳,从而降低决策对经验数量...全局游戏策略GGP(General Game Playing)旨在开发一种没有游戏经验支撑下能够精通各类游戏的人工智能。在原有强化学习算法研究的基础上,提出一种基于经验的简化学习方法,通过对游戏状态的筛选和游戏经验的归纳,从而降低决策对经验数量的需求,提高决策效率,并能达到指定胜利、平局或失败的游戏目标。通过在三种不同的游戏规则下与玩家进行游戏比赛实验表明,该学习方法能有效地达到预期结果。展开更多
基金Acknowledgement: The Project is sponsored by National Science Foundation of China (No. 60873139) and Natural Science Foundation of Shanxi Province (No. 2008011040).
文摘全局游戏策略GGP(General Game Playing)旨在开发一种没有游戏经验支撑下能够精通各类游戏的人工智能。在原有强化学习算法研究的基础上,提出一种基于经验的简化学习方法,通过对游戏状态的筛选和游戏经验的归纳,从而降低决策对经验数量的需求,提高决策效率,并能达到指定胜利、平局或失败的游戏目标。通过在三种不同的游戏规则下与玩家进行游戏比赛实验表明,该学习方法能有效地达到预期结果。