This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies th...This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.展开更多
In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constrain...In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.展开更多
A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate...A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate solutions of the system of general nonlinear variational inclusions involving different nonlinear operators in uniformly smooth Banach spaces.展开更多
The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively....The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively. The bilinear equation of the nonlinear Schrodinger equation with derivative (DNLSE) and its multisoliton solutions are given by reduction.展开更多
This paper is mainly concerned with existence and nonexistence results for solutions to the Kirchhoff type equation−(a+b∫_(R^(3))|∇u|^(2))Δu+V(x)u=f(u)in R^(3),with the general hypotheses on the nonlinearity f being...This paper is mainly concerned with existence and nonexistence results for solutions to the Kirchhoff type equation−(a+b∫_(R^(3))|∇u|^(2))Δu+V(x)u=f(u)in R^(3),with the general hypotheses on the nonlinearity f being as introduced by Berestycki and Lions.Our analysis introduces variational techniques to the analysis of the effect of the nonlinearity,especially for those cases when the concentration-compactness principle cannot be applied in terms of obtaining the compactness of the bounded Palais-Smale sequences and a minimizing problem related to the existence of a ground state on the Pohozaev manifold rather than the Nehari manifold associated with the equation.展开更多
In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive relea...In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive release and general nonlinear incidence rate and investigate dynamical behaviors of the model. Under the reasonable assumptions, the sufficient conditions which guarantee the globally attractive of the disease-free periodic solution and the permanence of the infected fish are established, that is, the infected fish dies out if , whereas the disease persists if . To substantiate our theoretical results, extensive numerical simulations are performed for a hypothetical set of parameter values.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially general...In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially generalize some recent ones obtained by He Ma et al.展开更多
In this study, we investigate a pine wilt transmission model with general nonlinear incidence rates and time-varying pulse roguing. Using the stroboscopic map and comparison theorem, we proved that the disease-free eq...In this study, we investigate a pine wilt transmission model with general nonlinear incidence rates and time-varying pulse roguing. Using the stroboscopic map and comparison theorem, we proved that the disease-free equilibrium is global attractive determined by the basic reproduction number <em>R</em><sub>1</sub> < 1, and in such a case, the endemic equilibrium does not exist. The disease uniformly persists only if <em>R</em><sub>2</sub> > 1.展开更多
In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, ...In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, which is used to solve the bending problems of nonhomogeneous cylindrical shells under arbitrary axial symmetric loads, is derived. Its uniform convergence is proved. Finally, it is only necessary to solve one set of binary linear algebraic equations. A numerical example is given at the end of the paper which indicates satisfactory results of displacement and stress resultants can be obtained and converge to the exact solution.展开更多
This paper investigates a nonlocal dispersal epidemic model under the multiple nonlocal distributed delays and nonlinear incidence effects.First,the minimal wave speed c*and the basic reproduction number Ro are define...This paper investigates a nonlocal dispersal epidemic model under the multiple nonlocal distributed delays and nonlinear incidence effects.First,the minimal wave speed c*and the basic reproduction number Ro are defined,which determine the existence of traveling wave solutions.Second,with the help of the upper and lower solutions,Schauder's fixed point theorem,and limiting techniques,the traveling waves satisfying some asymptotic boundary conditions are discussed.Specifically,when Ro>1,for every speed c>c^(*) there exists a traveling wave solution satisfying the boundary conditions,and there is no such traveling wave solution for any 0<c<c^(*) when R_(0)>1 or c>0 when R_(0)<1.Finally,we analyze the effects of nonlocal time delay on the minimum wave speed.展开更多
In this paper,a semilinear pseudo-parabolic equation with a general nonlin-earity and singular potential is considered.We prove the local existence of solution by Galerkin method and contraction mapping theorem.Moreov...In this paper,a semilinear pseudo-parabolic equation with a general nonlin-earity and singular potential is considered.We prove the local existence of solution by Galerkin method and contraction mapping theorem.Moreover,we prove the blow-up of solution and estimate the upper bound of the blow-up time for J(u0)≤0.Finally,we prove the finite time blow-up and estimate the upper bound of blow-up time for J(u0)>0.展开更多
In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the...In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.展开更多
Let 0<α,β<n and f,g∈ C([0,∞)×[0,∞))be two nonnegative functions.We study nonnegative classical solutions of the system{(-△)^(α/2)u=f(u,v)in R^(n),(-△)^(β/2)v=g(u,v)in R^(n),and the corresponding eq...Let 0<α,β<n and f,g∈ C([0,∞)×[0,∞))be two nonnegative functions.We study nonnegative classical solutions of the system{(-△)^(α/2)u=f(u,v)in R^(n),(-△)^(β/2)v=g(u,v)in R^(n),and the corresponding equivalent integral system.We classify all such solutions when f(s,t)is nondecreasing in s and increasing in t,g(s,t)is increasing in s and nondecreasing in i,and f(μ^(n-α)s,μ^(n-β)t)/μ^(n-α),g(μ^(n-α)s,μ^(n-β)t)/μ^(n-β)are nonincreasing in μ>0 for all s,t≥0.The main technique we use is the method of moving spheres in integral forms.Since our assumptions are more general than those in the previous literature,some new ideas are introduced to overcome this difficulty.展开更多
This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the n...This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the nonlinear term is mere cubic.The new framework of convergence analysis consists of two steps.In the first step,by truncating the nonlinear term into a global Lipschitz function,an alternative numerical method is proposed and proved in a rigorous way to be convergent in the discrete L2 norm;followed in the second step,the maximum bound of the numerical solution of the alternative numerical method is obtained by using a lifting technique,as implies that the two numerical methods are the same one.Under our framework of convergence analysis,with neither any restriction on the grid ratio nor any requirement of the small initial value,we establish the error estimate of the proposed conservative Fourier pseudo-spectral method,while previous work requires the certain restriction for the focusing case.The error bound is proved to be of O(h^(r)+t^(2))with grid size h and time step t.In fact,the framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the nonlinear Schr¨odinger-type equations.Numerical results are conducted to indicate the accuracy and efficiency of the proposed method,and investigate the effect of the nonlinear term and initial data on the blow-up solution.展开更多
In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subpro...In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.展开更多
In this paper,we consider a class of Kirchhoff equation,in the presence of a Kelvin-Voigt type damping and a source term of general nonlinearity forms.Where the studied equation is given as followsutt-K(Nu(t))[Δ_(p(x...In this paper,we consider a class of Kirchhoff equation,in the presence of a Kelvin-Voigt type damping and a source term of general nonlinearity forms.Where the studied equation is given as followsutt-K(Nu(t))[Δ_(p(x))^(u)+Δ_(r(x))^(ut)]=F(x,t,u).Mere,K(Nu(t))is a Kirchhoff function,Δ_(r(x))^(ut)represent a Kelvin-Vbigt strong damp-ing term,and F(x,t,u)is a source term.According to an appropriate assumption,we obtain the local existence of the weak solutions by applying the Galerkin's approximation method.Furthermore,we prove a non-global existence result for certain solutions with negative/positive initial energy.More precisely,our aim is to find a sufficient conditions for p(x)/q(x)/r(x)/F(x/t/u)and the initial data for which the blow-up occurs.展开更多
A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in tr...A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.展开更多
In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-...In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.展开更多
基金Sponsored by the Natural Science of Foundation of Fujian Province(Grant No.A0510025).
文摘This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.
基金supported by the NSFC(12271184)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J10001).
文摘In the present paper,we prove the existence,non-existence and multiplicity of positive normalized solutions(λ_(c),u_(c))∈R×H^(1)(R^(N))to the general Kirchhoff problem-M■,satisfying the normalization constraint f_(R)^N u^2dx=c,where M∈C([0,∞))is a given function satisfying some suitable assumptions.Our argument is not by the classical variational method,but by a global branch approach developed by Jeanjean et al.[J Math Pures Appl,2024,183:44–75]and a direct correspondence,so we can handle in a unified way the nonlinearities g(s),which are either mass subcritical,mass critical or mass supercritical.
基金supported by the Scientific Research Fund of Sichuan Normal University(No.11ZDL01)the Sichuan Province Leading Academic Discipline Project(No.SZD0406)
文摘A new system of general nonlinear variational inclusions is introduced and studied in Banach spaces. An iterative algorithm is developed and analyzed by use of the resolvent operator techniques to find the approximate solutions of the system of general nonlinear variational inclusions involving different nonlinear operators in uniformly smooth Banach spaces.
基金The project supported by National Natural Science Foundation of China under Grant No.10671121
文摘The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively. The bilinear equation of the nonlinear Schrodinger equation with derivative (DNLSE) and its multisoliton solutions are given by reduction.
文摘This paper is mainly concerned with existence and nonexistence results for solutions to the Kirchhoff type equation−(a+b∫_(R^(3))|∇u|^(2))Δu+V(x)u=f(u)in R^(3),with the general hypotheses on the nonlinearity f being as introduced by Berestycki and Lions.Our analysis introduces variational techniques to the analysis of the effect of the nonlinearity,especially for those cases when the concentration-compactness principle cannot be applied in terms of obtaining the compactness of the bounded Palais-Smale sequences and a minimizing problem related to the existence of a ground state on the Pohozaev manifold rather than the Nehari manifold associated with the equation.
文摘In a polluted environment, considering the biological population infected with a kind of disease and hunted by human beings, we formulate a nonautonomous SIR population-epidemic model with time-varying impulsive release and general nonlinear incidence rate and investigate dynamical behaviors of the model. Under the reasonable assumptions, the sufficient conditions which guarantee the globally attractive of the disease-free periodic solution and the permanence of the infected fish are established, that is, the infected fish dies out if , whereas the disease persists if . To substantiate our theoretical results, extensive numerical simulations are performed for a hypothetical set of parameter values.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
基金Supported by the Nation Natural Science Foundation of China(Grant No.11271141)Chongqing Science and Technology Commission(Grant No.cstc2018jcyjAX0787).
文摘In this paper,we consider a semilinear parabolic equation with a general nonlinearity.We establish a new finite time blow-up criterion and also derive the upper bound for the blow-up time.The results partially generalize some recent ones obtained by He Ma et al.
文摘In this study, we investigate a pine wilt transmission model with general nonlinear incidence rates and time-varying pulse roguing. Using the stroboscopic map and comparison theorem, we proved that the disease-free equilibrium is global attractive determined by the basic reproduction number <em>R</em><sub>1</sub> < 1, and in such a case, the endemic equilibrium does not exist. The disease uniformly persists only if <em>R</em><sub>2</sub> > 1.
文摘In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, which is used to solve the bending problems of nonhomogeneous cylindrical shells under arbitrary axial symmetric loads, is derived. Its uniform convergence is proved. Finally, it is only necessary to solve one set of binary linear algebraic equations. A numerical example is given at the end of the paper which indicates satisfactory results of displacement and stress resultants can be obtained and converge to the exact solution.
基金supported by a grant from the Young Scientist Funds of Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01C63)Natural Science Foundation of China(No.12271421).
文摘This paper investigates a nonlocal dispersal epidemic model under the multiple nonlocal distributed delays and nonlinear incidence effects.First,the minimal wave speed c*and the basic reproduction number Ro are defined,which determine the existence of traveling wave solutions.Second,with the help of the upper and lower solutions,Schauder's fixed point theorem,and limiting techniques,the traveling waves satisfying some asymptotic boundary conditions are discussed.Specifically,when Ro>1,for every speed c>c^(*) there exists a traveling wave solution satisfying the boundary conditions,and there is no such traveling wave solution for any 0<c<c^(*) when R_(0)>1 or c>0 when R_(0)<1.Finally,we analyze the effects of nonlocal time delay on the minimum wave speed.
基金Supported by National Natural Science Foundation of China(Grant No.11271141).
文摘In this paper,a semilinear pseudo-parabolic equation with a general nonlin-earity and singular potential is considered.We prove the local existence of solution by Galerkin method and contraction mapping theorem.Moreover,we prove the blow-up of solution and estimate the upper bound of the blow-up time for J(u0)≤0.Finally,we prove the finite time blow-up and estimate the upper bound of blow-up time for J(u0)>0.
基金Project (51475411) supported by the National Natural Science Foundation of ChinaProject (LY15E070002) supported by Zhejiang Provincial Natural Science Foundation of China
文摘In order to control the growth of space debris,a novel tethered space robot(TSR) was put forward.After capture,the platform,tether,and target constituted a tethered combination system.General nonlinear dynamics of the tethered combination system in the post-capture phase was established with the consideration of the attitudes of two spacecrafts and the quadratic nonlinear elasticity of the tether.The motion law of the tethered combination in the deorbiting process with different disturbances was simulated and discussed on the premise that the platform was only controlled by a constant thrust force.It is known that the four motion freedoms of the tethered combination are coupled with each other in the deorbiting process from the simulation results.A noticeable phenomenon is that the tether longitudinal vibration does not decay to vanish even under the large tether damping with initial attitude disturbances due to the coupling effect.The approximate analytical solutions of the dynamics for a simplified model are obtained through the perturbation method.The condition of the inter resonance phenomenon is the frequency ratio λ_1=2.The case study shows good accordance between the analytical solutions and numerical results,indicating the effectiveness and correctness of approximate analytical solutions.
基金This research is funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number 101.02-2020.22.
文摘Let 0<α,β<n and f,g∈ C([0,∞)×[0,∞))be two nonnegative functions.We study nonnegative classical solutions of the system{(-△)^(α/2)u=f(u,v)in R^(n),(-△)^(β/2)v=g(u,v)in R^(n),and the corresponding equivalent integral system.We classify all such solutions when f(s,t)is nondecreasing in s and increasing in t,g(s,t)is increasing in s and nondecreasing in i,and f(μ^(n-α)s,μ^(n-β)t)/μ^(n-α),g(μ^(n-α)s,μ^(n-β)t)/μ^(n-β)are nonincreasing in μ>0 for all s,t≥0.The main technique we use is the method of moving spheres in integral forms.Since our assumptions are more general than those in the previous literature,some new ideas are introduced to overcome this difficulty.
基金Jialing Wang’s work is supported by the National Natural Science Foundation of China(Grant No.11801277)Tingchun Wang’s work is supported by the National Natural Science Foundation of China(Grant No.11571181)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20171454)Qing Lan Project.Yushun Wang’s work is supported by the National Natural Science Foundation of China(Grant Nos.11771213 and 12171245).
文摘This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the nonlinear term is mere cubic.The new framework of convergence analysis consists of two steps.In the first step,by truncating the nonlinear term into a global Lipschitz function,an alternative numerical method is proposed and proved in a rigorous way to be convergent in the discrete L2 norm;followed in the second step,the maximum bound of the numerical solution of the alternative numerical method is obtained by using a lifting technique,as implies that the two numerical methods are the same one.Under our framework of convergence analysis,with neither any restriction on the grid ratio nor any requirement of the small initial value,we establish the error estimate of the proposed conservative Fourier pseudo-spectral method,while previous work requires the certain restriction for the focusing case.The error bound is proved to be of O(h^(r)+t^(2))with grid size h and time step t.In fact,the framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the nonlinear Schr¨odinger-type equations.Numerical results are conducted to indicate the accuracy and efficiency of the proposed method,and investigate the effect of the nonlinear term and initial data on the blow-up solution.
文摘In this paper, an SQP type algorithm with a new nonmonotone line search technique for general constrained optimization problems is presented. The new algorithm does not have to solve the second order correction subproblems for each iterations, but still can circumvent the so-called Maratos effect. The algorithm's global convergence and superlinear convergent rate have been proved. In addition, we can prove that, after a few iterations, correction subproblems need not be solved, so computation amount of the algorithm will be decreased much more. Numerical experiments show that the new algorithm is effective.
文摘In this paper,we consider a class of Kirchhoff equation,in the presence of a Kelvin-Voigt type damping and a source term of general nonlinearity forms.Where the studied equation is given as followsutt-K(Nu(t))[Δ_(p(x))^(u)+Δ_(r(x))^(ut)]=F(x,t,u).Mere,K(Nu(t))is a Kirchhoff function,Δ_(r(x))^(ut)represent a Kelvin-Vbigt strong damp-ing term,and F(x,t,u)is a source term.According to an appropriate assumption,we obtain the local existence of the weak solutions by applying the Galerkin's approximation method.Furthermore,we prove a non-global existence result for certain solutions with negative/positive initial energy.More precisely,our aim is to find a sufficient conditions for p(x)/q(x)/r(x)/F(x/t/u)and the initial data for which the blow-up occurs.
基金National Natural Science Foundation of China(No.61374044)Shanghai Municipal Science and Technology Commission,China(No.15510722100)+2 种基金Shanghai Municipal Education Commission,China(No.14ZZ088)Shanghai Talent Development Plan,ChinaShanghai Baoshan Science and Technology Commission,China(No.bkw2013120)
文摘A new identification method of neuro-uzzy Hammerstein model based on probability density function(PDF) is presented,which is different from the idea that mean squared error(MSE) is employed as the index function in traditional identification methods.Firstly,a neuro-fuzzy based Hammerstein model is constructed to describe the nonlinearity of Hammerstein process without any prior process knowledge.Secondly,a kind of special test signal is used to separate the link parts of the Hammerstein model.More specifically,the conception of PDF is introduced to solve the identification problem of the neuro-fuzzy Hammerstein model.The antecedent parameters are estimated by a clustering algorithm,while the consequent parameters of the model are identified by designing a virtual PDF control system in which the PDF of the modeling error is estimated and controlled to converge to the target.The proposed method not only guarantees the accuracy of the model but also dominates the spatial distribution of PDF of the model error to improve the generalization ability of the model.Simulated results show the effectiveness of the proposed method.
基金the the Innovation Fund of the Academy of Mathematics and System Sciencesby the Management,Decision and Information System Lab.,Chinese Academy of Sciences.
文摘In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.