General-purpose processor (GPP) is an important platform for fast Fourier transform (FFT),due to its flexibility,reliability and practicality.FFT is a representative application intensive in both computation and m...General-purpose processor (GPP) is an important platform for fast Fourier transform (FFT),due to its flexibility,reliability and practicality.FFT is a representative application intensive in both computation and memory access,optimizing the FFT performance of a GPP also benefits the performances of many other applications.To facilitate the analysis of FFT,this paper proposes a theoretical model of the FFT processing.The model gives out a tight lower bound of the runtime of FFT on a GPP,and guides the architecture optimization for GPP as well.Based on the model,two theorems on optimization of architecture parameters are deduced,which refer to the lower bounds of register number and memory bandwidth.Experimental results on different processor architectures (including Intel Core i7 and Godson-3B) validate the performance model.The above investigations were adopted in the development of Godson-3B,which is an industrial GPP.The optimization techniques deduced from our performance model improve the FFT performance by about 40%,while incurring only 0.8% additional area cost.Consequently,Godson-3B solves the 1024-point single-precision complex FFT in 0.368 μs with about 40 Watt power consumption,and has the highest performance-per-watt in complex FFT among processors as far as we know.This work could benefit optimization of other GPPs as well.展开更多
The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively ...The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively illustrates the fundamental principles of quantum theory.To date,the practical implementation of the sequential SG experiment has not been fully achieved.In this study,we demonstrate the capability of programmable quantum processors to simulate the sequential SG experiment.The specific parametric shallow quantum circuits,which are suitable for the limitations of current noisy quantum hardware,are given to replicate the functionality of SG devices with the ability to perform measurements in different directions.Surprisingly,it has been demonstrated that Wigner’s SG interferometer can be readily implemented in our sequential quantum circuit.With the utilization of the identical circuits,it is also feasible to implement Wheeler’s delayed-choice experiment.We propose the utilization of cross-shaped programmable quantum processors to showcase sequential experiments,and the simulation results demonstrate a strong alignment with theoretical predictions.With the rapid advancement of cloud-based quantum computing,such as BAQIS Quafu,it is our belief that the proposed solution is well-suited for deployment on the cloud,allowing for public accessibility.Our findings not only expand the potential applications of quantum computers,but also contribute to a deeper comprehension of the fundamental principles underlying quantum theory.展开更多
A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity...A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.展开更多
This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this s...This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this system. It can optimize the process of piezoresi stive sensor calibration and compensation, then, a total error factor within 0.2 % of the sensor′s repeatability errors is obtained. Data are recorded and coeff icients are determined automatically by this system, thus, the sensor compensati on is simplified greatly. For operating easily, a wizard compensation program is designed to correct every error and to get the optimum compensation.展开更多
As an important branch of information security algorithms,the efficient and flexible implementation of stream ciphers is vital.Existing implementation methods,such as FPGA,GPP and ASIC,provide a good support,but they ...As an important branch of information security algorithms,the efficient and flexible implementation of stream ciphers is vital.Existing implementation methods,such as FPGA,GPP and ASIC,provide a good support,but they could not achieve a better tradeoff between high speed processing and high flexibility.ASIC has fast processing speed,but its flexibility is poor,GPP has high flexibility,but the processing speed is slow,FPGA has high flexibility and processing speed,but the resource utilization is very low.This paper studies a stream cryptographic processor which can efficiently and flexibly implement a variety of stream cipher algorithms.By analyzing the structure model,processing characteristics and storage characteristics of stream ciphers,a reconfigurable stream cryptographic processor with special instructions based on VLIW is presented,which has separate/cluster storage structure and is oriented to stream cipher operations.The proposed instruction structure can effectively support stream cipher processing with multiple data bit widths,parallelism among stream cipher processing with different data bit widths,and parallelism among branch control and stream cipher processing with high instruction level parallelism;the designed separate/clustered special bit registers and general register heaps,key register heaps can satisfy cryptographic requirements.So the proposed processor not only flexibly accomplishes the combination of multiple basic stream cipher operations to finish stream cipher algorithms.It has been implemented with 0.18μm CMOS technology,the test results show that the frequency can reach 200 MHz,and power consumption is 310 mw.Ten kinds of stream ciphers were realized in the processor.The key stream generation throughput of Grain-80,W7,MICKEY,ACHTERBAHN and Shrink algorithm is 100 Mbps,66.67 Mbps,66.67 Mbps,50 Mbps and 800 Mbps,respectively.The test result shows that the processor presented can achieve good tradeoff between high performance and flexibility of stream ciphers.展开更多
Objective:To review developments in sound processors over the past 30 years that have resulted in significant improvements in outcomes for Nucleus~ recipients.
A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated o...A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated on the mole fraction of products,methanol conversion,hydrogen yield and the amount of carbon monoxide under various operating conditions.Subsequently,0.5 wt% Ru/Al2O3 as methanation catalyst was prepared by impregnation method and coupled with MSR step to evaluate the capability of methanol processor for CO reduction.Based on the experimental results,the optimum conditions were obtained as feed flow rate of 5mL/h and temperature of 250℃,leading to a low CO selectivity and high H2 yield.The designed reformer with catalyst coated layer was compared with the conventional packed bed reformer at the same operating conditions.The constructed fuel processor had a good performance and excellent capability for on-board hydrogen production.展开更多
Due to the fact that the register files seriously affect the performance and area of coarse-grained reconfigurable cryptographic processors, an efficient structure of the distributed cross-domain register file is prop...Due to the fact that the register files seriously affect the performance and area of coarse-grained reconfigurable cryptographic processors, an efficient structure of the distributed cross-domain register file is proposed to realize a cryptographic processor with a high performance and a lowarea cost. In order to meet the demands of high performance and high flexibility at a lowarea cost, a union structure with the multi-ports access structure, i, e., a distributed crossdomain register file, is designed by analyzing the algorithm features of different ciphers. Considering different algorithm requirements of the global register files and local register files,the circuit design is realized by adopting different design parameters under TSMC( Taiwan Semiconductor Manufacturing Company) 40 nm CMOS( complementary metal oxide semiconductor) technology and compared with other similar works. The experimental results showthat the proposed distributed cross-domain register structure can effectively improve the performance of the unit area, of which the total performance of block per cycle is improved by17. 79% and performance of block per cycle per area is improved by 117%.展开更多
Slow speed of the Next-Generation sequencing data analysis, compared to the latest high throughput sequencers such as HiSeq X system, using the current industry standard genome analysis pipeline, has been the major fa...Slow speed of the Next-Generation sequencing data analysis, compared to the latest high throughput sequencers such as HiSeq X system, using the current industry standard genome analysis pipeline, has been the major factor of data backlog which limits the real-time use of genomic data for precision medicine. This study demonstrates the DRAGEN Bio-IT Processor as a potential candidate to remove the “Big Data Bottleneck”. DRAGENTM accomplished the variant calling, for ~40× coverage WGS data in as low as ~30 minutes using a single command, achieving the over 50-fold data analysis speed while maintaining the similar or better variant calling accuracy than the standard GATK Best Practices workflow. This systematic comparison provides the faster and efficient NGS data analysis alternative to NGS-based healthcare industries and research institutes to meet the requirement for precision medicine based healthcare.展开更多
The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks ...The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.展开更多
The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented...The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented. Two image algorithms are developed: template-based automatic target recognition and zone labeling. One is estimating for motion direction in the infrared image background, another is line picking-up algorithm based on image zone labeling and phase grouping technique. It is a kind of 'hardware' function that can be called by the DSP in high-level algorithm. It is also a kind of hardware algorithm of the DSP. The results of experiments show the reconfigurable computing technology based on RMP is an ideal accelerating means to deal with the high-speed image processing tasks. High real time performance is obtained in our two applications on RMP.展开更多
Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed fo...Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the CPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1 × 10^6. The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit.展开更多
A hybrid two-stage flowshop scheduling problem was considered which involves m identical parallel machines at Stage 1 and a burn-in processor M at Stage 2, and the makespan was taken as the minimization objective. Thi...A hybrid two-stage flowshop scheduling problem was considered which involves m identical parallel machines at Stage 1 and a burn-in processor M at Stage 2, and the makespan was taken as the minimization objective. This scheduling problem is NP-hard in general. We divide it into eight subcases. Except for the following two subcases: (1) b≥ an, max{m, B} 〈 n; (2) a1 ≤ b ≤ an, m ≤ B 〈 n, for all other subcases, their NP-hardness was proved or pointed out, corresponding approximation algorithms were conducted and their worst-case performances were estimated. In all these approximation algorithms, the Multifit and PTAS algorithms were respectively used, as the jobs were scheduled in m identical parallel machines.展开更多
An Efficient and flexible implementation of block ciphers is critical to achieve information security processing.Existing implementation methods such as GPP,FPGA and cryptographic application-specific ASIC provide the...An Efficient and flexible implementation of block ciphers is critical to achieve information security processing.Existing implementation methods such as GPP,FPGA and cryptographic application-specific ASIC provide the broad range of support.However,these methods could not achieve a good tradeoff between high-speed processing and flexibility.In this paper,we present a reconfigurable VLIW processor architecture targeted at block cipher processing,analyze basic operations and storage characteristics,and propose the multi-cluster register-file structure for block ciphers.As for the same operation element of block ciphers,we adopt reconfigurable technology for multiple cryptographic processing units and interconnection scheme.The proposed processor not only flexibly accomplishes the combination of multiple basic cryptographic operations,but also realizes dynamic configuration for cryptographic processing units.It has been implemented with0.18μm CMOS technology,the test results show that the frequency can reach 350 MHz.and power consumption is 420 mw.Ten kinds of block and hash ciphers were realized in the processor.The encryption throughput of AES,DES,IDEA,and SHA-1 algorithm is1554 Mbps,448Mbps,785 Mbps,and 424 Mbps respectively,the test result shows that our processor's encryption performance is significantly higher than other designs.展开更多
Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and...Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature.展开更多
Java technology is spreading rapidly all over the world in recent years. It is a popular application development language for its well-encapsulation, platform-independent and high security. There are great amounts of ...Java technology is spreading rapidly all over the world in recent years. It is a popular application development language for its well-encapsulation, platform-independent and high security. There are great amounts of Java games and other gadgets on mobile platforms, as well as on set-up-box systems. As Java applications become more sophisticated, the Java Virtual Machine (JVM) mid-dle-wares in embedded systems are not satisfying, Java-specific chips extend in the market. All existing Java-based system software or Operating System (OS) are used on JVM, they cannot be used on Java processors. It is important to develop a pure Java system software or OS so that embedded systems using Java processors will have great performance in Java applications. This paper presents a set of system software designed for a Java-specified processor VP6K, which is also a System-on-Chip (SoC). This system software includes real-time multitask dispatching, file management, device management, hardware drivers, and infrastructural Application Programming Interface (APIs). According to ex-perimental results, the system software provides interfaces for Java programs to fully handle CPU resource, so that all applications can be executed properly and efficiently. VP6K embedded platform shows its good performance for Java applications when the system software is implemented.展开更多
A detailed experiment of 1-pixel bit reconfigurable ternary optical processor (TOP) is proposed in the paper. 42 basic operation units (BOUs) and 28 typical logic operators of the TOP are realized in the experimen...A detailed experiment of 1-pixel bit reconfigurable ternary optical processor (TOP) is proposed in the paper. 42 basic operation units (BOUs) and 28 typical logic operators of the TOP are realized in the experiment. Results of the test cases elaborately cover the every combination of BOUs and all the nine inputs of ternary processor. Both the experiment process and results analysis are given in this paper. The experimental results demonstrate that the theory of reconfiguring a TOP is valid and that the reconfiguration circuitry is effective.展开更多
Virtualization is the key technology of cloud computing. Network virtualization plays an important role in this field. Its performance is very relevant to network virtualizing. Nowadays its implementations are mainly ...Virtualization is the key technology of cloud computing. Network virtualization plays an important role in this field. Its performance is very relevant to network virtualizing. Nowadays its implementations are mainly based on the idea of Software Define Network (SDN). Open vSwitch is a sort of software virtual switch, which conforms to the OpenFlow protocol standard. It is basically deployed in the Linux kernel hypervisor. This leads to its performance relatively poor because of the limited system resource. In turn, the packet process throughput is very low.In this paper, we present a Cavium-based Open vSwitch implementation. The Cavium platform features with multi cores and couples of hard ac-celerators. It supports zero-copy of packets and handles packet more quickly. We also carry some experiments on the platform. It indicates that we can use it in the enterprise network or campus network as convergence layer and core layer device.展开更多
基金supported by the National Science and Technology Major Project under Grant Nos.2009ZX01028-002-003,2009ZX01029-001-003,2010ZX01036-001-002the National Natural Science Foundation of China under Grant Nos.61050002,61003064,60921002
文摘General-purpose processor (GPP) is an important platform for fast Fourier transform (FFT),due to its flexibility,reliability and practicality.FFT is a representative application intensive in both computation and memory access,optimizing the FFT performance of a GPP also benefits the performances of many other applications.To facilitate the analysis of FFT,this paper proposes a theoretical model of the FFT processing.The model gives out a tight lower bound of the runtime of FFT on a GPP,and guides the architecture optimization for GPP as well.Based on the model,two theorems on optimization of architecture parameters are deduced,which refer to the lower bounds of register number and memory bandwidth.Experimental results on different processor architectures (including Intel Core i7 and Godson-3B) validate the performance model.The above investigations were adopted in the development of Godson-3B,which is an industrial GPP.The optimization techniques deduced from our performance model improve the FFT performance by about 40%,while incurring only 0.8% additional area cost.Consequently,Godson-3B solves the 1024-point single-precision complex FFT in 0.368 μs with about 40 Watt power consumption,and has the highest performance-per-watt in complex FFT among processors as far as we know.This work could benefit optimization of other GPPs as well.
基金supported by Beijing Academy of Quantum Information Sciencessupported by the State Key Laboratory of Low Dimensional Quantum Physics+2 种基金the Start-up Fund provided by Tsinghua Universitythe financial support provided by the National Natural Science Foundation of China(Grant No.92065113)the Anhui Initiative in Quantum Information Technologies。
文摘The historical significance of the Stern–Gerlach(SG)experiment lies in its provision of the initial evidence for space quantization.Over time,its sequential form has evolved into an elegant paradigm that effectively illustrates the fundamental principles of quantum theory.To date,the practical implementation of the sequential SG experiment has not been fully achieved.In this study,we demonstrate the capability of programmable quantum processors to simulate the sequential SG experiment.The specific parametric shallow quantum circuits,which are suitable for the limitations of current noisy quantum hardware,are given to replicate the functionality of SG devices with the ability to perform measurements in different directions.Surprisingly,it has been demonstrated that Wigner’s SG interferometer can be readily implemented in our sequential quantum circuit.With the utilization of the identical circuits,it is also feasible to implement Wheeler’s delayed-choice experiment.We propose the utilization of cross-shaped programmable quantum processors to showcase sequential experiments,and the simulation results demonstrate a strong alignment with theoretical predictions.With the rapid advancement of cloud-based quantum computing,such as BAQIS Quafu,it is our belief that the proposed solution is well-suited for deployment on the cloud,allowing for public accessibility.Our findings not only expand the potential applications of quantum computers,but also contribute to a deeper comprehension of the fundamental principles underlying quantum theory.
文摘A notable portion of cachelines in real-world workloads exhibits inner non-uniform access behaviors.However,modern cache management rarely considers this fine-grained feature,which impacts the effective cache capacity of contemporary high-performance spacecraft processors.To harness these non-uniform access behaviors,an efficient cache replacement framework featuring an auxiliary cache specifically designed to retain evicted hot data was proposed.This framework reconstructs the cache replacement policy,facilitating data migration between the main cache and the auxiliary cache.Unlike traditional cacheline-granularity policies,the approach excels at identifying and evicting infrequently used data,thereby optimizing cache utilization.The evaluation shows impressive performance improvement,especially on workloads with irregular access patterns.Benefiting from fine granularity,the proposal achieves superior storage efficiency compared with commonly used cache management schemes,providing a potential optimization opportunity for modern resource-constrained processors,such as spacecraft processors.Furthermore,the framework complements existing modern cache replacement policies and can be seamlessly integrated with minimal modifications,enhancing their overall efficacy.
文摘This paper presents a smart compensation system based on MCA7707 (a kind of signal processor). The li near errors and high order errors of a sensor (especially piezoresistive sensor) can be corrected by using this system. It can optimize the process of piezoresi stive sensor calibration and compensation, then, a total error factor within 0.2 % of the sensor′s repeatability errors is obtained. Data are recorded and coeff icients are determined automatically by this system, thus, the sensor compensati on is simplified greatly. For operating easily, a wizard compensation program is designed to correct every error and to get the optimum compensation.
基金supported by National Natural Science Foundation of China with granted No.61404175
文摘As an important branch of information security algorithms,the efficient and flexible implementation of stream ciphers is vital.Existing implementation methods,such as FPGA,GPP and ASIC,provide a good support,but they could not achieve a better tradeoff between high speed processing and high flexibility.ASIC has fast processing speed,but its flexibility is poor,GPP has high flexibility,but the processing speed is slow,FPGA has high flexibility and processing speed,but the resource utilization is very low.This paper studies a stream cryptographic processor which can efficiently and flexibly implement a variety of stream cipher algorithms.By analyzing the structure model,processing characteristics and storage characteristics of stream ciphers,a reconfigurable stream cryptographic processor with special instructions based on VLIW is presented,which has separate/cluster storage structure and is oriented to stream cipher operations.The proposed instruction structure can effectively support stream cipher processing with multiple data bit widths,parallelism among stream cipher processing with different data bit widths,and parallelism among branch control and stream cipher processing with high instruction level parallelism;the designed separate/clustered special bit registers and general register heaps,key register heaps can satisfy cryptographic requirements.So the proposed processor not only flexibly accomplishes the combination of multiple basic stream cipher operations to finish stream cipher algorithms.It has been implemented with 0.18μm CMOS technology,the test results show that the frequency can reach 200 MHz,and power consumption is 310 mw.Ten kinds of stream ciphers were realized in the processor.The key stream generation throughput of Grain-80,W7,MICKEY,ACHTERBAHN and Shrink algorithm is 100 Mbps,66.67 Mbps,66.67 Mbps,50 Mbps and 800 Mbps,respectively.The test result shows that the processor presented can achieve good tradeoff between high performance and flexibility of stream ciphers.
基金funded by Cochlear Limited,the manufacturer of Nucleus implant systems
文摘Objective:To review developments in sound processors over the past 30 years that have resulted in significant improvements in outcomes for Nucleus~ recipients.
基金supported by the Iran National Science Foundation (INSF)
文摘A novel design of plate-type microchannel reactor has been developed for fuel cell-grade hydrogen production.Commercial Cu/Zn/Al2O3 was used as catalyst for the reforming reaction,and its effectiveness was evaluated on the mole fraction of products,methanol conversion,hydrogen yield and the amount of carbon monoxide under various operating conditions.Subsequently,0.5 wt% Ru/Al2O3 as methanation catalyst was prepared by impregnation method and coupled with MSR step to evaluate the capability of methanol processor for CO reduction.Based on the experimental results,the optimum conditions were obtained as feed flow rate of 5mL/h and temperature of 250℃,leading to a low CO selectivity and high H2 yield.The designed reformer with catalyst coated layer was compared with the conventional packed bed reformer at the same operating conditions.The constructed fuel processor had a good performance and excellent capability for on-board hydrogen production.
基金The National Natural Science Foundation of China(No.61176024)
文摘Due to the fact that the register files seriously affect the performance and area of coarse-grained reconfigurable cryptographic processors, an efficient structure of the distributed cross-domain register file is proposed to realize a cryptographic processor with a high performance and a lowarea cost. In order to meet the demands of high performance and high flexibility at a lowarea cost, a union structure with the multi-ports access structure, i, e., a distributed crossdomain register file, is designed by analyzing the algorithm features of different ciphers. Considering different algorithm requirements of the global register files and local register files,the circuit design is realized by adopting different design parameters under TSMC( Taiwan Semiconductor Manufacturing Company) 40 nm CMOS( complementary metal oxide semiconductor) technology and compared with other similar works. The experimental results showthat the proposed distributed cross-domain register structure can effectively improve the performance of the unit area, of which the total performance of block per cycle is improved by17. 79% and performance of block per cycle per area is improved by 117%.
文摘Slow speed of the Next-Generation sequencing data analysis, compared to the latest high throughput sequencers such as HiSeq X system, using the current industry standard genome analysis pipeline, has been the major factor of data backlog which limits the real-time use of genomic data for precision medicine. This study demonstrates the DRAGEN Bio-IT Processor as a potential candidate to remove the “Big Data Bottleneck”. DRAGENTM accomplished the variant calling, for ~40× coverage WGS data in as low as ~30 minutes using a single command, achieving the over 50-fold data analysis speed while maintaining the similar or better variant calling accuracy than the standard GATK Best Practices workflow. This systematic comparison provides the faster and efficient NGS data analysis alternative to NGS-based healthcare industries and research institutes to meet the requirement for precision medicine based healthcare.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No.60921062)the National Natural Science Foundation of China (Grant No.60873014)the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos.61003082 and 60903059)
文摘The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3x. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.
文摘The concept and advantage of reconfigurable technology is introduced. A kind of processor architecture of re configurable macro processor (RMP) model based on FPGA array and DSP is put forward and has been implemented. Two image algorithms are developed: template-based automatic target recognition and zone labeling. One is estimating for motion direction in the infrared image background, another is line picking-up algorithm based on image zone labeling and phase grouping technique. It is a kind of 'hardware' function that can be called by the DSP in high-level algorithm. It is also a kind of hardware algorithm of the DSP. The results of experiments show the reconfigurable computing technology based on RMP is an ideal accelerating means to deal with the high-speed image processing tasks. High real time performance is obtained in our two applications on RMP.
基金supported by National Natural Science Foundation of China (No. 10805004)Foundation of National Key Lab. of Science and Technology on Vacuum & Cryogenic of China (No. 9140C550404100C55)
文摘Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the CPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1 × 10^6. The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit.
基金Project supported by the Science and Technology Development Fund of Shanghai University(Grant No.A.10-0101-06-0017)
文摘A hybrid two-stage flowshop scheduling problem was considered which involves m identical parallel machines at Stage 1 and a burn-in processor M at Stage 2, and the makespan was taken as the minimization objective. This scheduling problem is NP-hard in general. We divide it into eight subcases. Except for the following two subcases: (1) b≥ an, max{m, B} 〈 n; (2) a1 ≤ b ≤ an, m ≤ B 〈 n, for all other subcases, their NP-hardness was proved or pointed out, corresponding approximation algorithms were conducted and their worst-case performances were estimated. In all these approximation algorithms, the Multifit and PTAS algorithms were respectively used, as the jobs were scheduled in m identical parallel machines.
基金supported by National Natural Science Foundation of China with granted No.61404175
文摘An Efficient and flexible implementation of block ciphers is critical to achieve information security processing.Existing implementation methods such as GPP,FPGA and cryptographic application-specific ASIC provide the broad range of support.However,these methods could not achieve a good tradeoff between high-speed processing and flexibility.In this paper,we present a reconfigurable VLIW processor architecture targeted at block cipher processing,analyze basic operations and storage characteristics,and propose the multi-cluster register-file structure for block ciphers.As for the same operation element of block ciphers,we adopt reconfigurable technology for multiple cryptographic processing units and interconnection scheme.The proposed processor not only flexibly accomplishes the combination of multiple basic cryptographic operations,but also realizes dynamic configuration for cryptographic processing units.It has been implemented with0.18μm CMOS technology,the test results show that the frequency can reach 350 MHz.and power consumption is 420 mw.Ten kinds of block and hash ciphers were realized in the processor.The encryption throughput of AES,DES,IDEA,and SHA-1 algorithm is1554 Mbps,448Mbps,785 Mbps,and 424 Mbps respectively,the test result shows that our processor's encryption performance is significantly higher than other designs.
基金supported by the National Basic Research Program of China(Grant No.2010CB327605)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20120005120021)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.2013RC1202)the Program for New Century Excellent Talents in University,China(Grant No.NECT-11-0596)the Beijing Nova Program,China(Grant No.2011066)
文摘Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature.
基金Supported by the Guangzhou Key Technology R&D Program (No. 2007Z2-D0011)
文摘Java technology is spreading rapidly all over the world in recent years. It is a popular application development language for its well-encapsulation, platform-independent and high security. There are great amounts of Java games and other gadgets on mobile platforms, as well as on set-up-box systems. As Java applications become more sophisticated, the Java Virtual Machine (JVM) mid-dle-wares in embedded systems are not satisfying, Java-specific chips extend in the market. All existing Java-based system software or Operating System (OS) are used on JVM, they cannot be used on Java processors. It is important to develop a pure Java system software or OS so that embedded systems using Java processors will have great performance in Java applications. This paper presents a set of system software designed for a Java-specified processor VP6K, which is also a System-on-Chip (SoC). This system software includes real-time multitask dispatching, file management, device management, hardware drivers, and infrastructural Application Programming Interface (APIs). According to ex-perimental results, the system software provides interfaces for Java programs to fully handle CPU resource, so that all applications can be executed properly and efficiently. VP6K embedded platform shows its good performance for Java applications when the system software is implemented.
基金Project supported by the National Natural Science Foundation of China(Grant No.61073049)the Shanghai Leading Academic Discipline Project(Grant No.J50103)the Doctorate Foundation of Education Ministry of China(Grant No.20093108110016)
文摘A detailed experiment of 1-pixel bit reconfigurable ternary optical processor (TOP) is proposed in the paper. 42 basic operation units (BOUs) and 28 typical logic operators of the TOP are realized in the experiment. Results of the test cases elaborately cover the every combination of BOUs and all the nine inputs of ternary processor. Both the experiment process and results analysis are given in this paper. The experimental results demonstrate that the theory of reconfiguring a TOP is valid and that the reconfiguration circuitry is effective.
文摘Virtualization is the key technology of cloud computing. Network virtualization plays an important role in this field. Its performance is very relevant to network virtualizing. Nowadays its implementations are mainly based on the idea of Software Define Network (SDN). Open vSwitch is a sort of software virtual switch, which conforms to the OpenFlow protocol standard. It is basically deployed in the Linux kernel hypervisor. This leads to its performance relatively poor because of the limited system resource. In turn, the packet process throughput is very low.In this paper, we present a Cavium-based Open vSwitch implementation. The Cavium platform features with multi cores and couples of hard ac-celerators. It supports zero-copy of packets and handles packet more quickly. We also carry some experiments on the platform. It indicates that we can use it in the enterprise network or campus network as convergence layer and core layer device.