This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and th...This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).展开更多
In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equat...In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a...In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.展开更多
In this paper,a nonlinear wave equation with variable coefficients is studied,interestingly,this equation can be used to describe the travelling waves propagating along the circular rod composed of a general compressi...In this paper,a nonlinear wave equation with variable coefficients is studied,interestingly,this equation can be used to describe the travelling waves propagating along the circular rod composed of a general compressible hyperelastic material with variable cross-sections and variable material densities.With the aid of Lou’s direct method1,the nonlinear wave equation with variable coefficients is reduced and two sets of symmetry transformations and exact solutions of the nonlinear wave equation are obtained.The corresponding numerical examples of exact solutions are presented by using different coefficients.Particularly,while the variable coefficients are taken as some special constants,the nonlinear wave equation with variable coefficients reduces to the one with constant coefficients,which can be used to describe the propagation of the travelling waves in general cylindrical rods composed of generally hyperelastic materials.Using the same method to solve the nonlinear wave equation,the validity and rationality of this method are verified.展开更多
In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noet...In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.展开更多
This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-s...This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]展开更多
In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmeth...In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.展开更多
In this paper, an improved algorithm for the solution of Generalized Burger-Fisher’s Equation is presented. A Maple code is generated for the algorithm and simulated. It was observed that the algorithm gives the solu...In this paper, an improved algorithm for the solution of Generalized Burger-Fisher’s Equation is presented. A Maple code is generated for the algorithm and simulated. It was observed that the algorithm gives the solution with less computation. The solution gives a better result when compared with the numerical solutions in the existing literature.展开更多
The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group...The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.展开更多
Presented here are the Generalized BCS Equations incorporating Fermi Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and composite superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) den...Presented here are the Generalized BCS Equations incorporating Fermi Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and composite superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) denote, respectively, one of the gap values, the critical temperature and the T-dependent critical current density. This framework, which extends our earlier study that dealt with the {Δ0, Tc, jc(0)} values of an SC, is also shown to lead to T-dependent values of several other related parameters such as the effective mass of electrons, their number density, critical velocity, Fermi velocity (VF), coherence length and the London penetration depth. The extended framework is applied to the jc(T) data reported by Romijn et al. for superconducting Aluminium strips and is shown not only to provide an alternative to the explanation given by them, but also to some novel features such as the role of the Sommerfeld coefficient γ(T) in the context of jc(T) and the role of VF(T) in the context of a recent finding by Plumb et al. about the superconductivity of Bi-2212.展开更多
In this paper, the one-dimensional time-homogenuous lto’s stochastic differential equations, which have degenerate and discontinuous diffusion coefficients, are considered. The non-confluent property of solutions is ...In this paper, the one-dimensional time-homogenuous lto’s stochastic differential equations, which have degenerate and discontinuous diffusion coefficients, are considered. The non-confluent property of solutions is showed under some local integrability condition on the diffusion and drift coefficients. The strong comparison theorem for solutions is also established.展开更多
概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generali...概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.展开更多
In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are ob...In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.展开更多
In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of...In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.展开更多
Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid cha...Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.展开更多
In this paper, we give two characterizations of multi-Cauchy-Jensen mappings. One of them reduces the system of n equations defining these mappings to a single functional equation. We also prove, using the fixed point...In this paper, we give two characterizations of multi-Cauchy-Jensen mappings. One of them reduces the system of n equations defining these mappings to a single functional equation. We also prove, using the fixed point method, the generalized Hyers-Ulam stability of this equation. Our results generalize some known outcomes.展开更多
The paper is devoted to obtaining the necessary and sufficient conditions of the solvability of weakly perturbed boundary-value problems for the nonlinear operator-differential Riccati equation in the Hilbert space on...The paper is devoted to obtaining the necessary and sufficient conditions of the solvability of weakly perturbed boundary-value problems for the nonlinear operator-differential Riccati equation in the Hilbert space on the interval and whole line with parameter ?. We find the solution of the given boundary value problem which for ε = 0 turns in one of the solutions of generating boundary value problem. Solution of the generating problem is constructed with the using generalized operator in analytical form. Iterative process for finding of solutions of weakly nonlinear equation with quadratic error is constructed.展开更多
In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized mo...In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized modular equations,and obtain some inequalities for this function.展开更多
基金This project is supported by Science and Technology Foundation of Shanghai Higher Eduction,Doctoral Program Foundation of Higher Education in China.National Nature Science Foundation of China and Youth Science Foundation of Universities in Shanghai.
文摘This paper presents a proper splitting iterative method for comparing the general restricted linear euqations Ax=b, x ∈T (where, b ∈AT, and T is an arbitrary but fixed subspace of C<sup>m</sup>) and the generalized in A<sub>T,S</sub> For the special case when b ∈AT and dim(T)=dim(AT), this splitting iterative methverse A<sub>T,S</sub> hod converges to A<sub>T,S</sub>b (the unique solution of the general restricted system Ax=bx ∈T).
基金The NSF(11001042) of ChinaSRFDP(20100043120001)FRFCU(09QNJJ002)
文摘In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher's equation, the nonlinear schr&#168;odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
文摘In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.
基金This work is supported by the National Natural Science Foundation of China(Nos.11672069,11702059,11232003,11672062)The Ph.D.Programs Foundation of Ministry of Education of China(No.20130041110050)+3 种基金the Research Startup Project Plan for Liaoning Doctors(No.20141119)the Fundamental Research Funds for the Central Universities(20000101)the Natural Science Foundation of Liaoning Province(No.20170540199)111 Project(B08014).
文摘In this paper,a nonlinear wave equation with variable coefficients is studied,interestingly,this equation can be used to describe the travelling waves propagating along the circular rod composed of a general compressible hyperelastic material with variable cross-sections and variable material densities.With the aid of Lou’s direct method1,the nonlinear wave equation with variable coefficients is reduced and two sets of symmetry transformations and exact solutions of the nonlinear wave equation are obtained.The corresponding numerical examples of exact solutions are presented by using different coefficients.Particularly,while the variable coefficients are taken as some special constants,the nonlinear wave equation with variable coefficients reduces to the one with constant coefficients,which can be used to describe the propagation of the travelling waves in general cylindrical rods composed of generally hyperelastic materials.Using the same method to solve the nonlinear wave equation,the validity and rationality of this method are verified.
基金National Natural Science Foundation of China under Grant No.10272034the Doctoral Program Foundation of China
文摘In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.
基金supported by the "Fundamental Research Funds for the Central Universities"the National Natural Science Foundation of China (10871151)
文摘This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]
基金Supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412+2 种基金National Natural Science Foundation of China under Grant No. 90718041Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734K.C. Wong Magna Fund in Ningbo University
文摘In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.
文摘In this paper, an improved algorithm for the solution of Generalized Burger-Fisher’s Equation is presented. A Maple code is generated for the algorithm and simulated. It was observed that the algorithm gives the solution with less computation. The solution gives a better result when compared with the numerical solutions in the existing literature.
文摘The aim of this paper is to investigate the superstability problem for the pexiderized trigonometric functional equation∑ v∈Φ∫Kf(xkv(y)k^-1)dwK(k)= Φ g(x)h(y), x, y ∈ G,where G is any topological group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g, h are continuous complex-valued functions.Consequently, we have generalized the results of stability for d'Alembert's and Wilson's equations by R. Badora, J. Baker, B. Bouikhalene, P. Gavruta, S. Kabbaj, Pl. Kannappan, G. H.Kim, J.M. Rassias, A. Roukbi, L. Sz′ekelyhidi, D. Zeglami, etc.
文摘Presented here are the Generalized BCS Equations incorporating Fermi Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and composite superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) denote, respectively, one of the gap values, the critical temperature and the T-dependent critical current density. This framework, which extends our earlier study that dealt with the {Δ0, Tc, jc(0)} values of an SC, is also shown to lead to T-dependent values of several other related parameters such as the effective mass of electrons, their number density, critical velocity, Fermi velocity (VF), coherence length and the London penetration depth. The extended framework is applied to the jc(T) data reported by Romijn et al. for superconducting Aluminium strips and is shown not only to provide an alternative to the explanation given by them, but also to some novel features such as the role of the Sommerfeld coefficient γ(T) in the context of jc(T) and the role of VF(T) in the context of a recent finding by Plumb et al. about the superconductivity of Bi-2212.
文摘In this paper, the one-dimensional time-homogenuous lto’s stochastic differential equations, which have degenerate and discontinuous diffusion coefficients, are considered. The non-confluent property of solutions is showed under some local integrability condition on the diffusion and drift coefficients. The strong comparison theorem for solutions is also established.
文摘概率密度演化方法(probability density evolution equation,PDEM)为非线性随机结构的动力响应分析提供了新的途径.通过PDEM获得结构响应概率密度函数(probability density function,PDF)的关键步骤是求解广义概率密度演化方程(generalized probability density evolution equation,GDEE).对于GDEE的求解通常采用有限差分法,然而,由于GDEE是初始条件间断的变系数一阶双曲偏微分方程,通过有限差分法求解GDEE可能会面临网格敏感性问题、数值色散和数值耗散现象.文章从全局逼近的角度出发,基于Chebyshev拟谱法为GDEE构造了全局插值格式,解决了数值色散、数值耗散以及网格敏感性问题.考虑GDEE的系数在每个时间步长均为常数,推导了GDEE在每一个时间步长内时域上的序列矩阵指数解.由于序列矩阵指数解形式上是解析的,从而很好地克服了数值稳定性问题.两个数值算例表明,通过Chebyshev拟谱法结合时域的序列矩阵指数解求解GDEE得到的结果与精确解以及Monte Carlo模拟的结果非常吻合,且数值耗散和数值色散现象几乎可以忽略.此外,拟谱法具有高效的收敛性且序列矩阵指数解不受CFL (Courant-Friedrichs-Lewy)条件的限制,因此该方法具有良好的数值稳定性和计算效率.
文摘In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
文摘In this paper, the so-called approximate convexity and concavity properties of generalized Groetzsch ring function μa (r) by studying the monotonieity,convexity or concavity of certain composites of μa(r) are obtained.
文摘In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.
基金supported by the National Science and Technology Major Project(No.2016ZX05047-002-001)
文摘Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction.
文摘In this paper, we give two characterizations of multi-Cauchy-Jensen mappings. One of them reduces the system of n equations defining these mappings to a single functional equation. We also prove, using the fixed point method, the generalized Hyers-Ulam stability of this equation. Our results generalize some known outcomes.
文摘The paper is devoted to obtaining the necessary and sufficient conditions of the solvability of weakly perturbed boundary-value problems for the nonlinear operator-differential Riccati equation in the Hilbert space on the interval and whole line with parameter ?. We find the solution of the given boundary value problem which for ε = 0 turns in one of the solutions of generating boundary value problem. Solution of the generating problem is constructed with the using generalized operator in analytical form. Iterative process for finding of solutions of weakly nonlinear equation with quadratic error is constructed.
文摘In this paper,the authors study the monotoneity and convexity of certain combinations and composites defined in terms of the generalized Grotzsch ring function μa (r), which appears in Ramanujan' s generalized modular equations,and obtain some inequalities for this function.