In this paper, the continuously differentiable optimization problem min{f(x) : x∈Ω}, where Ω ∈ R^n is a nonempty closed convex set, the gradient projection method by Calamai and More (Math. Programming, Vol.39...In this paper, the continuously differentiable optimization problem min{f(x) : x∈Ω}, where Ω ∈ R^n is a nonempty closed convex set, the gradient projection method by Calamai and More (Math. Programming, Vol.39. P.93-116, 1987) is modified by memory gradient to improve the convergence rate of the gradient projection method is considered. The convergence of the new method is analyzed without assuming that the iteration sequence {x^k} of bounded. Moreover, it is shown that, when f(x) is pseudo-convex (quasiconvex) function, this new method has strong convergence results. The numerical results show that the method in this paper is more effective than the gradient projection method.展开更多
基金Supported by the National Natural Science Foundation of China(No.10571106).
文摘In this paper, the continuously differentiable optimization problem min{f(x) : x∈Ω}, where Ω ∈ R^n is a nonempty closed convex set, the gradient projection method by Calamai and More (Math. Programming, Vol.39. P.93-116, 1987) is modified by memory gradient to improve the convergence rate of the gradient projection method is considered. The convergence of the new method is analyzed without assuming that the iteration sequence {x^k} of bounded. Moreover, it is shown that, when f(x) is pseudo-convex (quasiconvex) function, this new method has strong convergence results. The numerical results show that the method in this paper is more effective than the gradient projection method.