In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)syst...In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.展开更多
It is not easy to construct a model to describe the geochemical background in geochemical anomaly detection due to the complexity of the geological setting.Isolation forest and its improved algorithms can detect geoch...It is not easy to construct a model to describe the geochemical background in geochemical anomaly detection due to the complexity of the geological setting.Isolation forest and its improved algorithms can detect geochemical anomalies without modeling the complex geochemical background.These methods can effec-tively extract multivariate anomalies from large volume of high-dimensional geochemical data with unknown population distribution.To test the performance of these algorithms in the detection of mineralization-related geochemical anomalies,the isolation forest,extended isolation forest and generalized isolation forest models were established to detect multivariate anomalies from the stream sediment survey data collected in the Wu-laga area in Heilongjiang Province.The geochemical anomalies detected by the generalized isolation forest model account for 40%of the study area,and contain 100%of the known gold deposits.The geochemical anomalies detected by the isolation forest model account for 20%of the study area,and contain 71%of the known gold deposits.The geochemical anomalies detected by the extended isolation forest algorithm account for 34%of the study area,and contain 100%of the known gold deposits.Therefore,the isolation forest mo-del,extended isolation fo-rest model and generalized isolation forest model are comparable in geochemical anomaly detection.展开更多
基金supported by the National Natural Science Foundation of China under Grant U19B2014the Sichuan Science and Technology Program under Grant 2023NSFSC0457the Fundamental Research Funds for the Central Universities under Grant 2242022k60006.
文摘In this paper,a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation(SDIM)based multiple input multiple output(MIMO)systems.Specifically,we use orthogonal approximate message passing(OAMP)technique to develop OAMPNet,which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples.For OAMPNet,the prior probability of the transmit signal has a significant impact on the obtainable performance.For this reason,in our design,we first derive the prior probability of transmitting signals on each antenna for SDIMMIMO systems,which is different from the conventional massive MIMO systems.Then,for massive MIMO scenarios,we propose two novel algorithms to avoid pre-storing all active antenna combinations,thus considerably improving the memory efficiency and reducing the related overhead.Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.
文摘It is not easy to construct a model to describe the geochemical background in geochemical anomaly detection due to the complexity of the geological setting.Isolation forest and its improved algorithms can detect geochemical anomalies without modeling the complex geochemical background.These methods can effec-tively extract multivariate anomalies from large volume of high-dimensional geochemical data with unknown population distribution.To test the performance of these algorithms in the detection of mineralization-related geochemical anomalies,the isolation forest,extended isolation forest and generalized isolation forest models were established to detect multivariate anomalies from the stream sediment survey data collected in the Wu-laga area in Heilongjiang Province.The geochemical anomalies detected by the generalized isolation forest model account for 40%of the study area,and contain 100%of the known gold deposits.The geochemical anomalies detected by the isolation forest model account for 20%of the study area,and contain 71%of the known gold deposits.The geochemical anomalies detected by the extended isolation forest algorithm account for 34%of the study area,and contain 100%of the known gold deposits.Therefore,the isolation forest mo-del,extended isolation fo-rest model and generalized isolation forest model are comparable in geochemical anomaly detection.