In this paper, we present a new representation of gamma function as a series of complex delta functions. We establish the convergence of this representation in the sense of distributions. It turns out that the gamma f...In this paper, we present a new representation of gamma function as a series of complex delta functions. We establish the convergence of this representation in the sense of distributions. It turns out that the gamma function can be defined over a space of complex test functions of slow growth denoted by Z. Some properties of gamma function are discussed by using the properties of delta function.展开更多
Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct ...Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.展开更多
The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" ...The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.展开更多
Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simula...Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simulations. For modeling daily precipitation in weather generators, first-order Markov chain–dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the perfor- mance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian infor- mation criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.展开更多
To extend the kinetic formulation of city size distribution introduced in <a href="#ref1">[1]</a>, the non-Maxwellian kinetic modeling is introduced in the present study, in which a <em>var...To extend the kinetic formulation of city size distribution introduced in <a href="#ref1">[1]</a>, the non-Maxwellian kinetic modeling is introduced in the present study, in which a <em>variable collision kernel</em> is used in the underlying kinetic equation of Boltzmann type. By resorting to the well-known grazing asymptotic, a kinetic Fokker-Planck counterpart is obtained. The equilibrium of the Fokker-Planck equation belongs to the class of generalized Gamma distributions. Numerical test shows good fit of the generalized Gamma distribution with the city size distribution of China.展开更多
文摘In this paper, we present a new representation of gamma function as a series of complex delta functions. We establish the convergence of this representation in the sense of distributions. It turns out that the gamma function can be defined over a space of complex test functions of slow growth denoted by Z. Some properties of gamma function are discussed by using the properties of delta function.
文摘Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.
文摘The non-elementary integrals involving elementary exponential, hyperbolic and trigonometric functions, <img src="Edit_699140d3-f569-463e-b835-7ccdab822717.png" width="290" height="22" alt="" /><img src="Edit_bdd10470-9b63-4b2d-9cec-636969547ca5.png" width="90" height="22" alt="" /><span style="white-space:normal;">and <img src="Edit_e9cd6876-e2b8-45cf-ba17-391f054679b4.png" width="90" height="21" alt="" /></span>where <span style="white-space:nowrap;"><em>α</em>,<span style="white-space:nowrap;"><em>η</em></span><em></em></span> and <span style="white-space:nowrap;"><em>β</em></span> are real or complex constants are evaluated in terms of the confluent hypergeometric function <sub>1</sub><em>F</em><sub>1</sub> and the hypergeometric function <sub>1</sub><em>F</em><sub>2</sub>. The hyperbolic and Euler identities are used to derive some identities involving exponential, hyperbolic, trigonometric functions and the hypergeometric functions <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">1</sub> and <sub style="white-space:normal;">1</sub><em style="white-space:normal;">F</em><sub style="white-space:normal;">2</sub>. Having evaluated, these non-elementary integrals, some new probability measures generalizing the gamma-type and Gaussian distributions are also obtained. The obtained generalized probability distributions may, for example, allow to perform better statistical tests than those already known (e.g. chi-square (<span style="white-space:nowrap;"><em>x</em><sup>2</sup></span>) statistical tests and other statistical tests constructed based on the central limit theorem (CLT)), while avoiding the use of computational approximations (or methods) which are in general expensive and associated with numerical errors.
基金supported by the National Key Developing Program for Basic Sciences of China (GrantNo. 2010CB951404)Chinese Nature Science Foundation(Grant No. 40971024)the Special Meteorology Project[GYHY(QX)2007-6-1]
文摘Stochastic weather generators are statistical models that produce random numbers that resemble the observed weather data on which they have been fitted; they are widely used in meteorological and hydrologi- cal simulations. For modeling daily precipitation in weather generators, first-order Markov chain–dependent exponential, gamma, mixed-exponential, and lognormal distributions can be used. To examine the perfor- mance of these four distributions for precipitation simulation, they were fitted to observed data collected at 10 stations in the watershed of Yishu River. The parameters of these models were estimated using a maximum-likelihood technique performed using genetic algorithms. Parameters for each calendar month and the Fourier series describing parameters for the whole year were estimated separately. Bayesian infor- mation criterion, simulated monthly mean, maximum daily value, and variance were tested and compared to evaluate the fitness and performance of these models. The results indicate that the lognormal and mixed-exponential distributions give smaller BICs, but their stochastic simulations have overestimation and underestimation respectively, while the gamma and exponential distributions give larger BICs, but their stochastic simulations produced monthly mean precipitation very well. When these distributions were fitted using Fourier series, they all underestimated the above statistics for the months of June, July and August.
文摘To extend the kinetic formulation of city size distribution introduced in <a href="#ref1">[1]</a>, the non-Maxwellian kinetic modeling is introduced in the present study, in which a <em>variable collision kernel</em> is used in the underlying kinetic equation of Boltzmann type. By resorting to the well-known grazing asymptotic, a kinetic Fokker-Planck counterpart is obtained. The equilibrium of the Fokker-Planck equation belongs to the class of generalized Gamma distributions. Numerical test shows good fit of the generalized Gamma distribution with the city size distribution of China.