Two kinds of integrals of generalized Hamilton systems with additional terms are discussed. One kind is the integral deduced by Poisson method; the other is Hojman integral obtained by Lie symmetry.
The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we ca...The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.展开更多
基金Project supported by the National Natural Science Foundation (Grant No 10272021) and Doctoral Programme Foundation of Institute of Higher Education of China (Grant No 20040007022).
文摘Two kinds of integrals of generalized Hamilton systems with additional terms are discussed. One kind is the integral deduced by Poisson method; the other is Hojman integral obtained by Lie symmetry.
文摘The Hamilton principle is a variation principle describing the isolated and conservative systems, its Lagrange function is the difference between kinetic energy and potential energy. By Feynman path integration, we can obtain the standard Schrodinger equation. In this paper, we have given the generalized Hamilton principle, which can describe the heat exchange system, and the nonconservative force system. On this basis, we have further given their generalized Lagrange functions and Hamilton functions. With the Feynman path integration, we have given the generalized Schrodinger equation of nonconservative force system and the heat exchange system.