Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck...Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.展开更多
In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowled...In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.展开更多
In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a serie...In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.展开更多
This paper is devoted to the conditions of the existence of CC-center for the generalized Abel equations.Using some new original methods,we obtain extended results of the main theorems in the paper by Llibre and Valls...This paper is devoted to the conditions of the existence of CC-center for the generalized Abel equations.Using some new original methods,we obtain extended results of the main theorems in the paper by Llibre and Valls(2020)and the one by Zhou(2020),respectively.The proofs in this paper are much simpler than the previous ones.展开更多
The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential ...The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential equations (PDEs). Some illustrative equations are investigated by these methods and many hyperbolic, trigonometric and rational function solutions are found. We apply these methods to obtain the exact solutions for the generalized KdV-mKdV (GKdV-mKdV) equation with higherorder nonlinear terms. The obtained results confirm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear partial differential equations in mathematical physics. We compare between the results yielding from these methods. Also, a comparison between our new results in this paper and the well-known results are given.展开更多
A set of generalized-BCS equations (GBCSEs) was recently derived from a temperature-dependent Bethe-Salpeter equation and shown to deal satisfactorily with the experimental data comprising the Tcs and the multiple gap...A set of generalized-BCS equations (GBCSEs) was recently derived from a temperature-dependent Bethe-Salpeter equation and shown to deal satisfactorily with the experimental data comprising the Tcs and the multiple gaps of a variety of high-temperature superconductors (SCs). These equations are formulated in terms of the binding energies W1(T),W2(T),… of Cooper pairs (CPs) bound via one- and more than one-phonon exchange mechanisms;they contain no direct reference to the gap/s of an SC. Applications of these equations so far were based on the observation that for elemental SCs |W01|=△0 at T = 0 inthe limit of the dimensionless BCS interaction parameter λ→0. Here △0 is the zero-temperature gap whence it follows that the binding energy of a CP bound via one-phonon exchanges at T = 0 is 2|W01|. In this note we carry out a detailed comparison between the GBCSE-based W1(T) and the BCS-based energy gap △(T) for all 0≤T≤Tc and realistic, non-vanishingly-small values of λ. Our study is based on the experimental values of Tc Debye temperature , and ?0 of several selected elements including the “bad actors” such as Pb and Hg. It is thus established that the equation for W1(T) provides a viable alternative to the BCS equation for △(T). This suggests the use of, when required, the equation for W2(T) which refers to CPs bound via two-phonon exchanges, for the larger of the two T-dependent gaps of a non-elemental SC. These considerations naturally lead one to the concept of T-dependent interaction parameters in the theory of superconductivity. It is pointed out that such a concept is needed both in the well-known approach of Suhl et al. to multi-gap superconductivity and the approach provided by the GBCSEs. Attention is drawn to diverse fields where T-dependent Hamiltonians have been fruitfully employed in the past.展开更多
文摘Results on the composite generalized Laguerre-Legendre interpolation in unbounded domains are established. As an application,a composite Laguerre-Legendre pseudospectral scheme is presented for nonlinear Fokker-Planck equations on the whole line. The convergence and the stability of the proposed scheme are proved. Numerical results show the efficiency of the scheme and conform well to theoretical analysis.
文摘In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.
文摘In this paper, we study an elliptic equation with four distinct real roots and obtain five new solutions to this type of elliptic equation. Using these obtained new elliptic function solutions we can construct a series of explicit exact solutions for many nonlinear evolution equations. As examples, we choose combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrödinger equation and generalized Dullin-Gottwald-Holm equation to demonstrate the effectiveness of these new elliptic function solutions. These new elliptic function solutions can be applied to many other nonlinear evolution equations.
基金Supported by NSFC(Grant Nos.12171491 and 12071006)。
文摘This paper is devoted to the conditions of the existence of CC-center for the generalized Abel equations.Using some new original methods,we obtain extended results of the main theorems in the paper by Llibre and Valls(2020)and the one by Zhou(2020),respectively.The proofs in this paper are much simpler than the previous ones.
文摘The generalized sub-ODE method, the rational (G'/G)-expansion method, the exp-function method and the sine-cosine method are applied for constructing many traveling wave solutions of nonlinear partial differential equations (PDEs). Some illustrative equations are investigated by these methods and many hyperbolic, trigonometric and rational function solutions are found. We apply these methods to obtain the exact solutions for the generalized KdV-mKdV (GKdV-mKdV) equation with higherorder nonlinear terms. The obtained results confirm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear partial differential equations in mathematical physics. We compare between the results yielding from these methods. Also, a comparison between our new results in this paper and the well-known results are given.
文摘A set of generalized-BCS equations (GBCSEs) was recently derived from a temperature-dependent Bethe-Salpeter equation and shown to deal satisfactorily with the experimental data comprising the Tcs and the multiple gaps of a variety of high-temperature superconductors (SCs). These equations are formulated in terms of the binding energies W1(T),W2(T),… of Cooper pairs (CPs) bound via one- and more than one-phonon exchange mechanisms;they contain no direct reference to the gap/s of an SC. Applications of these equations so far were based on the observation that for elemental SCs |W01|=△0 at T = 0 inthe limit of the dimensionless BCS interaction parameter λ→0. Here △0 is the zero-temperature gap whence it follows that the binding energy of a CP bound via one-phonon exchanges at T = 0 is 2|W01|. In this note we carry out a detailed comparison between the GBCSE-based W1(T) and the BCS-based energy gap △(T) for all 0≤T≤Tc and realistic, non-vanishingly-small values of λ. Our study is based on the experimental values of Tc Debye temperature , and ?0 of several selected elements including the “bad actors” such as Pb and Hg. It is thus established that the equation for W1(T) provides a viable alternative to the BCS equation for △(T). This suggests the use of, when required, the equation for W2(T) which refers to CPs bound via two-phonon exchanges, for the larger of the two T-dependent gaps of a non-elemental SC. These considerations naturally lead one to the concept of T-dependent interaction parameters in the theory of superconductivity. It is pointed out that such a concept is needed both in the well-known approach of Suhl et al. to multi-gap superconductivity and the approach provided by the GBCSEs. Attention is drawn to diverse fields where T-dependent Hamiltonians have been fruitfully employed in the past.