The generalized Navier-Stokes equations with damping are considered.We will show that the generalized Navier-Stokes equations with damping |u|^β-1u have weak solutions for anyβ>1 and 0<α<5/4,and we will us...The generalized Navier-Stokes equations with damping are considered.We will show that the generalized Navier-Stokes equations with damping |u|^β-1u have weak solutions for anyβ>1 and 0<α<5/4,and we will use the Fourier splitting method to prove the L2 decay of weak solutions forβ>2 and 0<α<3/4.展开更多
This paper mainly focus on the global existence of the strong solutions for the generalized NavierStokes equations with damping. We obtain the global existence and uniqueness when α ≥5/4 for β ≥ 1 and when 1/2+β/...This paper mainly focus on the global existence of the strong solutions for the generalized NavierStokes equations with damping. We obtain the global existence and uniqueness when α ≥5/4 for β ≥ 1 and when 1/2+β/2≤ α ≤5/4 for 8/3≤ β<+∞.展开更多
This paper is concerned with the existence of pullback attractors for three dimensional generalized Navier-Stokes equations with delay.According to compact argument,the existence and uniqueness of weak solutions are p...This paper is concerned with the existence of pullback attractors for three dimensional generalized Navier-Stokes equations with delay.According to compact argument,the existence and uniqueness of weak solutions are proved by using Galerkin method,and the continuous dependence of solutions on initial values is also shown.Based on the asymptotic compactness via weak convergence method and pullback absorbing set on appropriate functional phase spaces,we get the existence of pullback attractors.展开更多
We establish a resonance type existence theorem for generalized evolutional Navier-Stokes equations with periodic boundary conditions and external force depending on velocity, using the Faedo-Galerkin method.
In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream fun...In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.展开更多
In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
The main objective of this study is to find novel wave solutions for the time-fractional generalized Rosenau-Kawahara-RLW equation, which occurs in unidirectional water wave propagation. The generalized Rosenau-Kawaha...The main objective of this study is to find novel wave solutions for the time-fractional generalized Rosenau-Kawahara-RLW equation, which occurs in unidirectional water wave propagation. The generalized Rosenau-Kawahara-RLW equation comprises three equations Rosenau equation, Kawahara equation, RLW equation and also p-th order nonlinear term. All these equations describe the wave phenomena especially the wave-wave and wave-wall interactions in shallow and narrow channel waters. The auxiliary equation method is employed to get the analytical results.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set ar...In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set are proved by the prior estimation and the Galerkin finite element method, thus the existence of the global attractor is proved and the upper bound estimate of the global attractor is obtained.展开更多
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ...In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.展开更多
This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational fo...This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.展开更多
We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the 3-D compressible Navier-Stokes equations under the assumption that the initial density ||po||L∞ is appropriate...We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the 3-D compressible Navier-Stokes equations under the assumption that the initial density ||po||L∞ is appropriate small and 1 〈 γ 〈 6/5. Here the initial density could have vacuum and we do not require that the initial energy is small.展开更多
For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are...For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.展开更多
The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; a...The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.展开更多
The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA00...The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained ...In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.展开更多
Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge t...Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.展开更多
文摘The generalized Navier-Stokes equations with damping are considered.We will show that the generalized Navier-Stokes equations with damping |u|^β-1u have weak solutions for anyβ>1 and 0<α<5/4,and we will use the Fourier splitting method to prove the L2 decay of weak solutions forβ>2 and 0<α<3/4.
基金supported by NSFC(No.12171014)by the National Key Research and Development Project of China Grant(No.2017YFC1500301)+1 种基金Joint key project of the National Science Foundation of China and the China earthquake administration(No.U1839206)by Research Foundation for Advanced Talents of Beijing Technology and Business University(No.19008020161)。
文摘This paper mainly focus on the global existence of the strong solutions for the generalized NavierStokes equations with damping. We obtain the global existence and uniqueness when α ≥5/4 for β ≥ 1 and when 1/2+β/2≤ α ≤5/4 for 8/3≤ β<+∞.
基金supported by NSFC of China(Grant 11771444)the Yue Qi Young Scholar Project,China University of Mining and Technology(Beijing)+1 种基金the Fund of Young Backbone Teachers in Henan Province(No.2018GGJS039)Incubation Fund Project of Henan Normal University(No.2020PL17).
文摘This paper is concerned with the existence of pullback attractors for three dimensional generalized Navier-Stokes equations with delay.According to compact argument,the existence and uniqueness of weak solutions are proved by using Galerkin method,and the continuous dependence of solutions on initial values is also shown.Based on the asymptotic compactness via weak convergence method and pullback absorbing set on appropriate functional phase spaces,we get the existence of pullback attractors.
文摘We establish a resonance type existence theorem for generalized evolutional Navier-Stokes equations with periodic boundary conditions and external force depending on velocity, using the Faedo-Galerkin method.
基金supported by the National Natural Science Foundation of China (No.10871131)the Science and Technology Commission of Shanghai Municipality (No.075105118)+1 种基金the Shanghai Leading Academic Discipline Project (No.S30405)the Fund for E-institutes of Shanghai Universities(No.E03004)
文摘In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
文摘The main objective of this study is to find novel wave solutions for the time-fractional generalized Rosenau-Kawahara-RLW equation, which occurs in unidirectional water wave propagation. The generalized Rosenau-Kawahara-RLW equation comprises three equations Rosenau equation, Kawahara equation, RLW equation and also p-th order nonlinear term. All these equations describe the wave phenomena especially the wave-wave and wave-wall interactions in shallow and narrow channel waters. The auxiliary equation method is employed to get the analytical results.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
文摘In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set are proved by the prior estimation and the Galerkin finite element method, thus the existence of the global attractor is proved and the upper bound estimate of the global attractor is obtained.
文摘In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs.
基金Program for New Century ExcellentTalents in University(NCET-04-0745)the Key Project of the National Natural Science Foundation of China(10431060)
文摘This is a continuation of the article(Comm.Partial Differential Equations 26(2001)965).In this article,the authors consider the one-dimensional compressible isentropic Navier-Stokes equations with gravitational force,fixed boundary condition,a general pressure and the density-dependent viscosity coefficient when the viscous gas connects to vacuum state with a jump in density.Precisely,the viscosity coefficient μ is proportional to ρ^θ and 0〈θ〈1/2,where ρ is the density,and the pressure P=P(ρ)is a general pressure.The global existence and the uniqueness of weak solution are proved.
基金supported by National Natural Science Foundation of China (11001090)the Fundamental Research Funds for the Central Universities(11QZR16)
文摘We establish the global existence and uniqueness of classical solutions to the Cauchy problem for the 3-D compressible Navier-Stokes equations under the assumption that the initial density ||po||L∞ is appropriate small and 1 〈 γ 〈 6/5. Here the initial density could have vacuum and we do not require that the initial energy is small.
基金Sponsored by National Natural Science Foundation of China (10431060, 10329101)
文摘For the viscous and heat-conductive fluids governed by the compressible Navier- Stokes equations with external force of general form in R^3, there exist nontrivial stationary solutions provided the external forces are small in suitable norms, which was studied in article [15], and there we also proved the global in time stability of the stationary solutions with respect to initial data in H^3-framework. In this article, the authors investigate the rates of convergence of nonstationary solutions to the corresponding stationary solutions when the initial data are small in H^3 and bounded in L6/5.
文摘The operator splitting method is used to deal with the Navier-Stokes equation, in which the physical process described by the equation is decomposed into two processes: a diffusion process and a convection process; and the finite element equation is established. The velocity field in the element is described by the shape function of the isoparametric element with nine nodes and the pressure field is described by the interpolation function of the four nodes at the vertex of the isoparametric element with nine nodes. The subroutine of the element and the integrated finite element code are generated by the Finite Element Program Generator (FEPG) successfully. The numerical simulation about the incompressible viscous liquid flowing over a cylinder is carded out. The solution agrees with the experimental results very well.
文摘The preconditioning method is used to solve the low Mach number flow. The space discritisation scheme is the Roe scheme and the DES turbulence model is used. Then, the low Mach number turbulence flow around the NACA0012 airfoil is used to verify the efficiency of the proposed method. Two cases of the low Mach number flows around the multi-element airfoil and the circular cylinder are also used to test the proposed method. Numerical results show that the methods combined the preconditioning method and compressible Navier-Stokes equations are efficient to solve low Mach number flows.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
文摘In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12326305,11931017,and 12271490)the Excellent Youth Science Fund Project of Henan Province(Grant No.242300421158)+2 种基金the Natural Science Foundation of Henan Province(Grant No.232300420119)the Excellent Science and Technology Innovation Talent Support Program of ZUT(Grant No.K2023YXRC06)Funding for the Enhancement Program of Advantageous Discipline Strength of ZUT(2022)。
文摘Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.