Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre...Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.展开更多
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener...The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
Robot calligraphy visually reflects the motion capability of robotic manipulators.While traditional researches mainly focus on image generation and the writing of simple calligraphic strokes or characters,this article...Robot calligraphy visually reflects the motion capability of robotic manipulators.While traditional researches mainly focus on image generation and the writing of simple calligraphic strokes or characters,this article presents a generative adversarial network(GAN)-based motion learning method for robotic calligraphy synthesis(Gan2CS)that can enhance the efficiency in writing complex calligraphy words and reproducing classic calligraphy works.The key technologies in the proposed approach include:(1)adopting the GAN to learn the motion parameters from the robot writing operation;(2)converting the learnt motion data into the style font and realising the transition from static calligraphy images to dynamic writing demonstration;(3)reproducing high-precision calligraphy works by synthesising the writing motion data hierarchically.In this study,the motion trajectories of sample calligraphy images are firstly extracted and converted into the robot module.The robot performs the writing with motion planning,and the writing motion parameters of calligraphy strokes are learnt with GANs.Then the motion data of basic strokes is synthesised based on the hierarchical process of‘stroke-radicalpart-character’.And the robot re-writes the synthesised characters whose similarity with the original calligraphy characters is evaluated.Regular calligraphy characters have been tested in the experiments for method validation and the results validated that the robot can actualise the robotic calligraphy synthesis of writing motion data with GAN.展开更多
Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence i...Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures that the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss which has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than other models;we attribute this to the dataset’s low dimensionality as the most probable explanation.展开更多
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver...Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.展开更多
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp...Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.展开更多
In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory...In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models.展开更多
Steganography based on generative adversarial networks(GANs)has become a hot topic among researchers.Due to GANs being unsuitable for text fields with discrete characteristics,researchers have proposed GANbased stegan...Steganography based on generative adversarial networks(GANs)has become a hot topic among researchers.Due to GANs being unsuitable for text fields with discrete characteristics,researchers have proposed GANbased steganography methods that are less dependent on text.In this paper,we propose a new method of generative lyrics steganography based on GANs,called GAN-GLS.The proposed method uses the GAN model and the largescale lyrics corpus to construct and train a lyrics generator.In this method,the GAN uses a previously generated line of a lyric as the input sentence in order to generate the next line of the lyric.Using a strategy based on the penalty mechanism in training,the GAN model generates non-repetitive and diverse lyrics.The secret information is then processed according to the data characteristics of the generated lyrics in order to hide information.Unlike other text generation-based linguistic steganographic methods,our method changes the way that multiple generated candidate items are selected as the candidate groups in order to encode the conditional probability distribution.The experimental results demonstrate that our method can generate highquality lyrics as stego-texts.Moreover,compared with other similar methods,the proposed method achieves good performance in terms of imperceptibility,embedding rate,effectiveness,extraction success rate and security.展开更多
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ...Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n...A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.展开更多
Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to res...Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.展开更多
Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis...Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10.展开更多
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba...It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process.展开更多
The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist...The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.展开更多
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications...The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style transfer.Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image.CYCLE-GAN is a classic GAN model,which has a wide range of scenarios in style transfer.Considering its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output image.However,it is difficult for CYCLE-GAN to converge and generate high-quality images.In order to solve this problem,spectral normalization is introduced into each convolutional kernel of the discriminator.Every convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed model.Besides,we use pretrained model(VGG16)to control the loss of image content in the position of l1 regularization.To avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss function.In terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative features.Experimental results show that the proposed model converges faster and achieves better FID scores than the state of the art.展开更多
Detecting anomaly logs is a great significance step for guarding system faults.Due to the uncertainty of abnormal log types,lack of real anomaly logs and accurately labeled log datasets.Existing technologies cannot be...Detecting anomaly logs is a great significance step for guarding system faults.Due to the uncertainty of abnormal log types,lack of real anomaly logs and accurately labeled log datasets.Existing technologies cannot be enough for detecting complex and various log point anomalies by using human-defined rules.We propose a log anomaly detection method based on Generative Adversarial Networks(GAN).This method uses the Encoder-Decoder framework based on Long Short-Term Memory(LSTM)network as the generator,takes the log keywords as the input of the encoder,and the decoder outputs the generated log template.The discriminator uses the Convolutional Neural Networks(CNN)to identify the difference between the generated log template and the real log template.The model parameters are optimized automatically by iteration.In the stage of anomaly detection,the probability of anomaly is calculated by the Euclidean distance.Experiments on real data show that this method can detect log point anomalies with an average precision of 95%.Besides,it outperforms other existing log-based anomaly detection methods.展开更多
Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due...Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due to their small size,irregular shape,and the use of mixed-cropping techniques,the farm fields of smallholder can be difficult to delineate automatically.In recent years,numerous studies on field contour extraction using a deep Convolutional Neural Network(CNN)have been proposed.However,there is a relative shortage of labeled data for filed boundaries,thus affecting the training effect of CNN.Traditional methods mostly use image flipping,and random rotation for data augmentation.In this paper,we propose to apply Generative Adversarial Network(GAN)for the data augmentation of farm fields label to increase the diversity of samples.Specifically,we propose an automated method featured by Fully Convolutional Neural networks(FCN)in combination with GAN to improve the delineation accuracy of smallholder farms from Very High Resolution(VHR)images.We first investigate four State-Of-The-Art(SOTA)FCN architectures,i.e.,U-Net,PSPNet,SegNet and OCRNet,to find the optimal architecture in the contour detection task of smallholder farm fields.Second,we apply the identified optimal FCN architecture in combination with Contour GAN and pixel2pixel GAN to improve the accuracy of contour detection.We test our method on the study area in the Sudano-Sahelian savanna region of northern Nigeria.The best combination achieved F1 scores of 0.686 on Test Set 1(TS1),0.684 on Test Set 2(TS2),and 0.691 on Test Set 3(TS3).Results indicate that our architecture adapts to a variety of advanced networks and proves its effectiveness in this task.The conceptual,theoretical,and experimental knowledge from this study is expected to seed many GAN-based farm delineation methods in the future.展开更多
基金This work was supported in part by the National Natural Science Foundation of China under Grant61503132 and Grant51477047the Hunan Provincial Natural Science Foundation of China under Grant2015JJ5029.
文摘Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
文摘The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金National Key Research and Development Program of China,Grant/Award Numbers:2021YFB2501301,2019YFB1600704The Science and Technology Development Fund,Grant/Award Numbers:0068/2020/AGJ,SKL‐IOTSC(UM)‐2021‐2023GDST,Grant/Award Numbers:2020B1212030003,MYRG2022‐00192‐FST。
文摘Robot calligraphy visually reflects the motion capability of robotic manipulators.While traditional researches mainly focus on image generation and the writing of simple calligraphic strokes or characters,this article presents a generative adversarial network(GAN)-based motion learning method for robotic calligraphy synthesis(Gan2CS)that can enhance the efficiency in writing complex calligraphy words and reproducing classic calligraphy works.The key technologies in the proposed approach include:(1)adopting the GAN to learn the motion parameters from the robot writing operation;(2)converting the learnt motion data into the style font and realising the transition from static calligraphy images to dynamic writing demonstration;(3)reproducing high-precision calligraphy works by synthesising the writing motion data hierarchically.In this study,the motion trajectories of sample calligraphy images are firstly extracted and converted into the robot module.The robot performs the writing with motion planning,and the writing motion parameters of calligraphy strokes are learnt with GANs.Then the motion data of basic strokes is synthesised based on the hierarchical process of‘stroke-radicalpart-character’.And the robot re-writes the synthesised characters whose similarity with the original calligraphy characters is evaluated.Regular calligraphy characters have been tested in the experiments for method validation and the results validated that the robot can actualise the robotic calligraphy synthesis of writing motion data with GAN.
文摘Many types of real-world information systems, including social media and e-commerce platforms, can be modelled by means of attribute-rich, connected networks. The goal of anomaly detection in artificial intelligence is to identify illustrations that deviate significantly from the main distribution of data or that differ from known cases. Anomalous nodes in node-attributed networks can be identified with greater precision if both graph and node attributes are taken into account. Almost all of the studies in this area focus on supervised techniques for spotting outliers. While supervised algorithms for anomaly detection work well in theory, they cannot be applied to real-world applications owing to a lack of labelled data. Considering the possible data distribution, our model employs a dual variational autoencoder (VAE), while a generative adversarial network (GAN) assures that the model is robust to adversarial training. The dual VAEs are used in another capacity: as a fake-node generator. Adversarial training is used to ensure that our latent codes have a Gaussian or uniform distribution. To provide a fair presentation of the graph, the discriminator instructs the generator to generate latent variables with distributions that are more consistent with the actual distribution of the data. Once the model has been learned, the discriminator is used for anomaly detection via reconstruction loss which has been trained to distinguish between the normal and artificial distributions of data. First, using a dual VAE, our model simultaneously captures cross-modality interactions between topological structure and node characteristics and overcomes the problem of unlabeled anomalies, allowing us to better understand the network sparsity and nonlinearity. Second, the proposed model considers the regularization of the latent codes while solving the issue of unregularized embedding techniques that can quickly lead to unsatisfactory representation. Finally, we use the discriminator reconstruction loss for anomaly detection as the discriminator is well-trained to separate the normal and generated data distributions because reconstruction-based loss does not include the adversarial component. Experiments conducted on attributed networks demonstrate the effectiveness of the proposed model and show that it greatly surpasses the previous methods. The area under the curve scores of our proposed model for the BlogCatalog, Flickr, and Enron datasets are 0.83680, 0.82020, and 0.71180, respectively, proving the effectiveness of the proposed model. The result of the proposed model on the Enron dataset is slightly worse than other models;we attribute this to the dataset’s low dimensionality as the most probable explanation.
基金supported by the National Natural Science Foundation of China(61533019,71232006,91520301)
文摘Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence.
基金This work is supported by the National Natural Science Foundation of China(Nos.61771154,61603239,61772454,6171101570).
文摘Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.
基金This research is funded by the Centre for Advanced Modeling and Geospatial Information Systems(CAMGIS),Faculty of Engineering and Information Technology,the University of Technology Sydney,Australia.
文摘In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61872134,61672222,author Y.L.Liu,http://www.nsfc.gov.cn/in part by Science and Technology Development Center of the Ministry of Education under Grant 2019J01020,author Y.L.Liu,http://www.moe.gov.cn/+1 种基金in part by Science and Technology Project of Transport Department of Hunan Province under Grant 201935,author Y.L.Liu,http://jtt.hunan.gov.cn/Science and Technology Program of Changsha City under Grant kh200519,kq2004021,author Y.L.Liu,http://kjj.changsha.gov.cn/.
文摘Steganography based on generative adversarial networks(GANs)has become a hot topic among researchers.Due to GANs being unsuitable for text fields with discrete characteristics,researchers have proposed GANbased steganography methods that are less dependent on text.In this paper,we propose a new method of generative lyrics steganography based on GANs,called GAN-GLS.The proposed method uses the GAN model and the largescale lyrics corpus to construct and train a lyrics generator.In this method,the GAN uses a previously generated line of a lyric as the input sentence in order to generate the next line of the lyric.Using a strategy based on the penalty mechanism in training,the GAN model generates non-repetitive and diverse lyrics.The secret information is then processed according to the data characteristics of the generated lyrics in order to hide information.Unlike other text generation-based linguistic steganographic methods,our method changes the way that multiple generated candidate items are selected as the candidate groups in order to encode the conditional probability distribution.The experimental results demonstrate that our method can generate highquality lyrics as stego-texts.Moreover,compared with other similar methods,the proposed method achieves good performance in terms of imperceptibility,embedding rate,effectiveness,extraction success rate and security.
基金The authors are highly thankful to the Development Research Center of Guangxi Relatively Sparse-populated Minorities(ID:GXRKJSZ201901)to the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA281164)This research was financially supported by the project of outstanding thousand young teachers’training in higher education institutions of Guangxi,Guangxi Colleges and Universities Key Laboratory Breeding Base of System Control and Information Processing.
文摘Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
文摘A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.
基金This work was supported in part by the National Science Foundation of China under Grant 61572526.
文摘Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception.
基金Supported by the National Natural Science Foundation of China(No.61501457)National Key Technology R&D Program(No.2015BAK21B00)
文摘Generative adversarial networks(GANs) have become a competitive method among computer vision tasks. There have been many studies devoted to utilizing generative network to do generative tasks, such as images synthesis. In this paper, a semi-supervised learning scheme is incorporated with generative adversarial network on image classification tasks to improve the image classification accuracy. Two applications of GANs are mainly focused on: semi-supervised learning and generation of images which can be as real as possible. The whole process is divided into two sections. First, only a small part of the dataset is utilized as labeled training data. And then a huge amount of samples generated from the generator is added into the training samples to improve the generalization of the discriminator. Through the semi-supervised learning scheme, full use of the unlabeled data is made which may contain potential information. Thus, the classification accuracy of the discriminator can be improved. Experimental results demonstrate the improvement of the classification accuracy of discriminator among different datasets, such as MNIST, CIFAR-10.
基金supported by the Engineering and Physical Sciences Research Council [grant number: EP/N509644/1]。
文摘It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process.
基金This work was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0016977,The Establishment Project of Industry-University Fusion District).
文摘The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.
基金This work is supported by the National Natural Science Foundation of China(No.61702226)the 111 Project(B12018)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20170200)the Fundamental Research Funds for the Central Universities(No.JUSRP11854).
文摘The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style transfer.Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image.CYCLE-GAN is a classic GAN model,which has a wide range of scenarios in style transfer.Considering its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output image.However,it is difficult for CYCLE-GAN to converge and generate high-quality images.In order to solve this problem,spectral normalization is introduced into each convolutional kernel of the discriminator.Every convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed model.Besides,we use pretrained model(VGG16)to control the loss of image content in the position of l1 regularization.To avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss function.In terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative features.Experimental results show that the proposed model converges faster and achieves better FID scores than the state of the art.
基金supported by National Natural Science Foundation of China under grant NO.61672392 and NO.61373038the National Key Research and Development Program of China under grant NO.2016YFC1202204.
文摘Detecting anomaly logs is a great significance step for guarding system faults.Due to the uncertainty of abnormal log types,lack of real anomaly logs and accurately labeled log datasets.Existing technologies cannot be enough for detecting complex and various log point anomalies by using human-defined rules.We propose a log anomaly detection method based on Generative Adversarial Networks(GAN).This method uses the Encoder-Decoder framework based on Long Short-Term Memory(LSTM)network as the generator,takes the log keywords as the input of the encoder,and the decoder outputs the generated log template.The discriminator uses the Convolutional Neural Networks(CNN)to identify the difference between the generated log template and the real log template.The model parameters are optimized automatically by iteration.In the stage of anomaly detection,the probability of anomaly is calculated by the Euclidean distance.Experiments on real data show that this method can detect log point anomalies with an average precision of 95%.Besides,it outperforms other existing log-based anomaly detection methods.
基金Foundation of Anhui Province Key Laboratory of Physical Geographic Environment(No.2022PGE012)
文摘Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due to their small size,irregular shape,and the use of mixed-cropping techniques,the farm fields of smallholder can be difficult to delineate automatically.In recent years,numerous studies on field contour extraction using a deep Convolutional Neural Network(CNN)have been proposed.However,there is a relative shortage of labeled data for filed boundaries,thus affecting the training effect of CNN.Traditional methods mostly use image flipping,and random rotation for data augmentation.In this paper,we propose to apply Generative Adversarial Network(GAN)for the data augmentation of farm fields label to increase the diversity of samples.Specifically,we propose an automated method featured by Fully Convolutional Neural networks(FCN)in combination with GAN to improve the delineation accuracy of smallholder farms from Very High Resolution(VHR)images.We first investigate four State-Of-The-Art(SOTA)FCN architectures,i.e.,U-Net,PSPNet,SegNet and OCRNet,to find the optimal architecture in the contour detection task of smallholder farm fields.Second,we apply the identified optimal FCN architecture in combination with Contour GAN and pixel2pixel GAN to improve the accuracy of contour detection.We test our method on the study area in the Sudano-Sahelian savanna region of northern Nigeria.The best combination achieved F1 scores of 0.686 on Test Set 1(TS1),0.684 on Test Set 2(TS2),and 0.691 on Test Set 3(TS3).Results indicate that our architecture adapts to a variety of advanced networks and proves its effectiveness in this task.The conceptual,theoretical,and experimental knowledge from this study is expected to seed many GAN-based farm delineation methods in the future.