Presents information on a study which proposed a type of globally convergent inexact generalized Newton methods to solve unconstrained optimization problems. Theorems on inexact generalized Newton algorithm with decre...Presents information on a study which proposed a type of globally convergent inexact generalized Newton methods to solve unconstrained optimization problems. Theorems on inexact generalized Newton algorithm with decreasing gradient norms; Discussion on the assumption given; Applications of algorithms and numerical tests.展开更多
A new nonsmooth equations model of constrained minimax problem was de-rived. The generalized Newton method was applied for solving this system of nonsmooth equations system. A new algorithm for solving constrained min...A new nonsmooth equations model of constrained minimax problem was de-rived. The generalized Newton method was applied for solving this system of nonsmooth equations system. A new algorithm for solving constrained minimax problem was established. The local superlinear and quadratic convergences of the algorithm were discussed.展开更多
Using K-T optimality condition of nonsmooth optimization, we establish two equivalent systems of the nonsmooth equations for the constrained minimax problem directly. Then generalized Newton methods are applied to so...Using K-T optimality condition of nonsmooth optimization, we establish two equivalent systems of the nonsmooth equations for the constrained minimax problem directly. Then generalized Newton methods are applied to solve these systems of the nonsmooth equations. Thus a new approach to solving the constrained minimax problem is developed.展开更多
Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust paramet...Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd.展开更多
In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.S...In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.Specifically,the algorithm that we investigate incorporates a specially designed nonsmooth(generalized)Newton step to furnish a second-order update rule for the multipliers.We first show in a unified fashion that under a few abstract assumptions,the proposed method is locally convergent and possesses a(nonasymptotic)superlinear convergence rate,even though the penalty parameter is fixed and/or the strict complementarity fails.Subsequently,we demonstrate that for the three typical scenarios,i.e.,the classic nonlinear programming,the nonlinear second-order cone programming and the nonlinear semidefinite programming,these abstract assumptions are nothing but exactly the implications of the iconic sufficient conditions that are assumed for establishing the Q-linear convergence rates of the method of multipliers without assuming the strict complementarity.展开更多
In this paper,we consider the tensor absolute value equations(TAVEs),which is a newly introduced problem in the context of multilinear systems.Although the system of the TAVEs is an interesting generalization of matri...In this paper,we consider the tensor absolute value equations(TAVEs),which is a newly introduced problem in the context of multilinear systems.Although the system of the TAVEs is an interesting generalization of matrix absolute value equations(AVEs),the well-developed theory and algorithms for the AVEs are not directly applicable to the TAVEs due to the nonlinearity(or multilinearity)of the problem under consideration.Therefore,we first study the solutions existence of some classes of the TAVEs with the help of degree theory,in addition to showing,by fixed point theory,that the system of the TAVEs has at least one solution under some checkable conditions.Then,we give a bound of solutions of the TAVEs for some special cases.To find a solution to the TAVEs,we employ the generalized Newton method and report some preliminary results.展开更多
基金This research is supported by Ministry of Education P.R.C. Asia-Pacific Operations Research Center (APORC).
文摘Presents information on a study which proposed a type of globally convergent inexact generalized Newton methods to solve unconstrained optimization problems. Theorems on inexact generalized Newton algorithm with decreasing gradient norms; Discussion on the assumption given; Applications of algorithms and numerical tests.
文摘A new nonsmooth equations model of constrained minimax problem was de-rived. The generalized Newton method was applied for solving this system of nonsmooth equations system. A new algorithm for solving constrained minimax problem was established. The local superlinear and quadratic convergences of the algorithm were discussed.
文摘Using K-T optimality condition of nonsmooth optimization, we establish two equivalent systems of the nonsmooth equations for the constrained minimax problem directly. Then generalized Newton methods are applied to solve these systems of the nonsmooth equations. Thus a new approach to solving the constrained minimax problem is developed.
基金This work was supported by the EPSRC(No.GR/R50738/01).
文摘Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd.
基金supported by National Natural Science Foundation of China (Grant No. 11801158)the Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50040)+2 种基金the Fundamental Research Funds for the Central Universities in Chinasupported by National Natural Science Foundation of China (Grant No. 11871002)the General Program of Science and Technology of Beijing Municipal Education Commission (Grant No. KM201810005004)
文摘In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.Specifically,the algorithm that we investigate incorporates a specially designed nonsmooth(generalized)Newton step to furnish a second-order update rule for the multipliers.We first show in a unified fashion that under a few abstract assumptions,the proposed method is locally convergent and possesses a(nonasymptotic)superlinear convergence rate,even though the penalty parameter is fixed and/or the strict complementarity fails.Subsequently,we demonstrate that for the three typical scenarios,i.e.,the classic nonlinear programming,the nonlinear second-order cone programming and the nonlinear semidefinite programming,these abstract assumptions are nothing but exactly the implications of the iconic sufficient conditions that are assumed for establishing the Q-linear convergence rates of the method of multipliers without assuming the strict complementarity.
基金supported by National Natural Science Foundation of China(Grant Nos.11571087 and 11771113)Natural Science Foundation of Zhejiang Province(Grant No.LY17A010028)supported by the Hong Kong Research Grant Council(Grant Nos.PolyU 15302114,15300715,15301716 and 15300717)。
文摘In this paper,we consider the tensor absolute value equations(TAVEs),which is a newly introduced problem in the context of multilinear systems.Although the system of the TAVEs is an interesting generalization of matrix absolute value equations(AVEs),the well-developed theory and algorithms for the AVEs are not directly applicable to the TAVEs due to the nonlinearity(or multilinearity)of the problem under consideration.Therefore,we first study the solutions existence of some classes of the TAVEs with the help of degree theory,in addition to showing,by fixed point theory,that the system of the TAVEs has at least one solution under some checkable conditions.Then,we give a bound of solutions of the TAVEs for some special cases.To find a solution to the TAVEs,we employ the generalized Newton method and report some preliminary results.