The author discusses the braiding structures of the generalized smash product bialgebra and the cobraiding structures of the generalized smash coproduct bialgebra. It is pointed out that doublecrossed product determin...The author discusses the braiding structures of the generalized smash product bialgebra and the cobraiding structures of the generalized smash coproduct bialgebra. It is pointed out that doublecrossed product determined by a cocycle is the generalized smash product and that doublecocrossed coproduct determined by a weak R-matrix is the generalized smash coproduct.展开更多
In this paper, we study the ring #(D,B) and obtain two very interesting results. First we prove in Theorem 3 that the category of rational left BU-modules is equivalent to both the category of #-rational left modules ...In this paper, we study the ring #(D,B) and obtain two very interesting results. First we prove in Theorem 3 that the category of rational left BU-modules is equivalent to both the category of #-rational left modules and the category of all (B,D)-Hopf modules D . Cai and Chen have proved this result in the case B = D = A. Secondly they have proved that if A has a nonzero left integral then A#A *rat is a dense subring of End k (A). We prove that #(A,A) is a dense subring of End k (Q), where Q is a certain subspace of #(A,A) under the condition that the antipode is bijective (see Theorem 18). This condition is weaker than the condition that A has a nonzero integral. It is well known the antipode is bijective in case A has a nonzero integral. Furthermore if A has nonzero left integral, Q can be chosen to be A (see Corollary 19) and #(A,A) is both left and right primitive. Thus A#A *rat ? #(A,A) ? End k (A). Moreover we prove that the left singular ideal of the ring #(A,A) is zero. A corollary of this is a criterion for A with nonzero left integral to be finite-dimensional, namely the ring #(A,A) has a finite uniform dimension.展开更多
文摘The author discusses the braiding structures of the generalized smash product bialgebra and the cobraiding structures of the generalized smash coproduct bialgebra. It is pointed out that doublecrossed product determined by a cocycle is the generalized smash product and that doublecocrossed coproduct determined by a weak R-matrix is the generalized smash coproduct.
文摘In this paper, we study the ring #(D,B) and obtain two very interesting results. First we prove in Theorem 3 that the category of rational left BU-modules is equivalent to both the category of #-rational left modules and the category of all (B,D)-Hopf modules D . Cai and Chen have proved this result in the case B = D = A. Secondly they have proved that if A has a nonzero left integral then A#A *rat is a dense subring of End k (A). We prove that #(A,A) is a dense subring of End k (Q), where Q is a certain subspace of #(A,A) under the condition that the antipode is bijective (see Theorem 18). This condition is weaker than the condition that A has a nonzero integral. It is well known the antipode is bijective in case A has a nonzero integral. Furthermore if A has nonzero left integral, Q can be chosen to be A (see Corollary 19) and #(A,A) is both left and right primitive. Thus A#A *rat ? #(A,A) ? End k (A). Moreover we prove that the left singular ideal of the ring #(A,A) is zero. A corollary of this is a criterion for A with nonzero left integral to be finite-dimensional, namely the ring #(A,A) has a finite uniform dimension.