In the interaction of laser-plasma the system of Zakharov equation plays an important role.This system attracted many scientists' wide interest and attention.And the formation, evolution and interaction of the Lan...In the interaction of laser-plasma the system of Zakharov equation plays an important role.This system attracted many scientists' wide interest and attention.And the formation, evolution and interaction of the Langmuir solutions differ from solutions of the KDV equation. Here we consider the following generalized Zakharov展开更多
This paper considers the stability of the solitary waves for the generalized Zakharov system. By applying the abstract theory of Grillakis M. et al. and detailed spectral analysis, we obtain the stability of the solit...This paper considers the stability of the solitary waves for the generalized Zakharov system. By applying the abstract theory of Grillakis M. et al. and detailed spectral analysis, we obtain the stability of the solitary waves.展开更多
This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +o...This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +oo we obtain two finite time blow-up results of solutions to the aforementioned 4 ≤ p 〈 N+2/N-2 4 system. One is obtained under the condition a ≥ 0 and 1 + 4/N or a 〈 0 and 1 〈 p 〈 1 + (N = 2,3); the other is established under the condition N = 3, 1 〈 p 〈 N=2/N-2 and α(p - 3) 〉 0. On the other hand, for co 〈 +∞ and α(p - 3) 〉 0, we prove a blow-up result for solutions with negative energy to the Zakharov system under study.展开更多
This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Zakharov equations {iu +uxx = uv + |u|^2u, vtt-vxx=(|u|^2)xx.First, we prove the existence of a smooth c...This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Zakharov equations {iu +uxx = uv + |u|^2u, vtt-vxx=(|u|^2)xx.First, we prove the existence of a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period L for the generalized Zakharov equations. Then, by using the classical method proposed by Benjamin, Bona et al., we show that this solution is orbitally stable by perturbations with period L. The results on the orbital stability of periodic traveling wave solutions for the generalized Zakharov equations in this paper can be regarded as a perfect extension of the results of [15, 16, 19].展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
The existence and uniqueness of a global smooth solution of the initial value problem for a class of systems of multi-dimensional generalized Zakharov tyhe equations have been proved by means of a priori integral esti...The existence and uniqueness of a global smooth solution of the initial value problem for a class of systems of multi-dimensional generalized Zakharov tyhe equations have been proved by means of a priori integral estimates and Galerkin method.展开更多
基金The research is supported by the Scientific Research Foundation of Yunnan Provincial Departmentthe Natural Science Foundation of Yunnan Province(No.2005A0026M).
文摘In the interaction of laser-plasma the system of Zakharov equation plays an important role.This system attracted many scientists' wide interest and attention.And the formation, evolution and interaction of the Langmuir solutions differ from solutions of the KDV equation. Here we consider the following generalized Zakharov
基金The research is supported by the Scientific Research Foundation of Yunnan Provincial Department and the Natural Science Foundation of Yunnan Province(2005A0026M)
文摘This paper considers the stability of the solitary waves for the generalized Zakharov system. By applying the abstract theory of Grillakis M. et al. and detailed spectral analysis, we obtain the stability of the solitary waves.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171241, 10801102,11071177)Sichuan Youth Science and Technology Foundation (Grant No. 07ZQ026-009)China Postdoctoral Science Foundation Funded Project
文摘This paper deals with blowing up of solutions to the Cauchy problem for a class of general- ized Zakharov system with combined power-type nonlinearities in two and three space dimensions. On the one hand, for co = +oo we obtain two finite time blow-up results of solutions to the aforementioned 4 ≤ p 〈 N+2/N-2 4 system. One is obtained under the condition a ≥ 0 and 1 + 4/N or a 〈 0 and 1 〈 p 〈 1 + (N = 2,3); the other is established under the condition N = 3, 1 〈 p 〈 N=2/N-2 and α(p - 3) 〉 0. On the other hand, for co 〈 +∞ and α(p - 3) 〉 0, we prove a blow-up result for solutions with negative energy to the Zakharov system under study.
基金supported by the National Natural Science Foundation of China(11401122)Science and technology project of Qufu Normal University(xkj201607)
文摘This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Zakharov equations {iu +uxx = uv + |u|^2u, vtt-vxx=(|u|^2)xx.First, we prove the existence of a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period L for the generalized Zakharov equations. Then, by using the classical method proposed by Benjamin, Bona et al., we show that this solution is orbitally stable by perturbations with period L. The results on the orbital stability of periodic traveling wave solutions for the generalized Zakharov equations in this paper can be regarded as a perfect extension of the results of [15, 16, 19].
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
文摘The existence and uniqueness of a global smooth solution of the initial value problem for a class of systems of multi-dimensional generalized Zakharov tyhe equations have been proved by means of a priori integral estimates and Galerkin method.