In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is present...In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.展开更多
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o...A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.展开更多
It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty eff...It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.展开更多
In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the ...In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the least residual problem of the above generalized inverse eigenvalue problem is studied by using the canonical correlation decomposition(CCD).The solutions to these problems are derived.Some numerical examples are given to illustrate the main results.展开更多
This paper considers a class of variational inequalities that model the buckling of a von Karman plate clamped on a part of its boundary and lying on a fiat rigid support. The existence and bifurcation results of D. G...This paper considers a class of variational inequalities that model the buckling of a von Karman plate clamped on a part of its boundary and lying on a fiat rigid support. The existence and bifurcation results of D. Goeleven, V. H. Nguyen and M. Thera[6] rely on the Leray- Schauder degree. Using the topological degree for pseudo-monotone operators of type (S+), the author establishes a more general existence result for such unilateral eigenvalue problems.展开更多
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
文摘In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.
基金supported by the National Natural Science Foundation of China(Nos.51178037 and10632020)the German Research Foundation(DFG)(Nos.ZH 15/11-1 and ZH 15/16-1)+1 种基金the International Bureau of the German Federal Ministry of Education and Research(BMBF)(No.CHN11/045)the National Basic Research Program of China(No.2010CB732104)
文摘A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method.
基金supported by the AVIC Research Project(Grant No.cxy2012BH07)the National Natural Science Foundation of China(Grant Nos.10872017,90816024,10876100)+1 种基金the Defense Industrial Technology Development Program(Grant Nos.A2120110001,B2120110011,A082013-2001)"111" Project(Grant No.B07009)
文摘It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.
基金Supported by the Key Discipline Construction Project of Tianshui Normal University
文摘In this paper,the generalized inverse eigenvalue problem for the(P,Q)-conjugate matrices and the associated approximation problem are discussed by using generalized singular value decomposition(GSVD).Moreover,the least residual problem of the above generalized inverse eigenvalue problem is studied by using the canonical correlation decomposition(CCD).The solutions to these problems are derived.Some numerical examples are given to illustrate the main results.
文摘This paper considers a class of variational inequalities that model the buckling of a von Karman plate clamped on a part of its boundary and lying on a fiat rigid support. The existence and bifurcation results of D. Goeleven, V. H. Nguyen and M. Thera[6] rely on the Leray- Schauder degree. Using the topological degree for pseudo-monotone operators of type (S+), the author establishes a more general existence result for such unilateral eigenvalue problems.