The relationship between environmental degradation and poverty has increasingly become the focus of national strategic decision-making in recent years.However,despite several theoretical explorations on the nexus,a de...The relationship between environmental degradation and poverty has increasingly become the focus of national strategic decision-making in recent years.However,despite several theoretical explorations on the nexus,a dearth of empirical literature on the poverty-environmental degradation nexus,specifically on Sub-Saharan Africa(SSA),still exists.In this study,we investigated the poverty-environmental degradation nexus in SSA.We hypothesized that poverty is both a cause and effect of environmental degradation,and this relationship is explained as a vicious cycle.Unlike previous studies,we employed several alternative indicators of environmental degradation to examine the poverty-environmental degradation nexus in this study.We used data from 41 countries of SSA between 1996 and 2019 and employed the generalized method of moments(GMM)approach.The findings suggest a cyclical relationship between poverty and environmental degradation in SSA,which confirms that an increase in poverty leads to an increase in environmental degradation,especially in deforestation and PM2.5 emissions.Similarly,the increase in environmental degradation positively affects poverty in SSA.We also confirmed that exogenous conditioning factors such as population growth rate,education,industrialization,and income inequality,institutional quality indicators such as governance effectiveness,control of corruption,freedom ad civil liberty,and democracy,and endogenous factors including fossil fuel energy use,fuelwood energy use,household health expenditure,infant mortality rate,and agriculture productivity influence the nexus between poverty and environmental degradation.The findings on the relationship between poverty and environmental degradation in SSA are a testimonial evidence that both poverty and environmental degradation are significant issues in SSA.Hence,poverty alleviation policies in SSA should not lead to PM2.5 emissions and deforestation,which may as well force people into a poverty-environmental degradation trap.Instead,poverty reduction policies should simultaneously achieve environmental conservation.展开更多
This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)En...This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.展开更多
文摘The relationship between environmental degradation and poverty has increasingly become the focus of national strategic decision-making in recent years.However,despite several theoretical explorations on the nexus,a dearth of empirical literature on the poverty-environmental degradation nexus,specifically on Sub-Saharan Africa(SSA),still exists.In this study,we investigated the poverty-environmental degradation nexus in SSA.We hypothesized that poverty is both a cause and effect of environmental degradation,and this relationship is explained as a vicious cycle.Unlike previous studies,we employed several alternative indicators of environmental degradation to examine the poverty-environmental degradation nexus in this study.We used data from 41 countries of SSA between 1996 and 2019 and employed the generalized method of moments(GMM)approach.The findings suggest a cyclical relationship between poverty and environmental degradation in SSA,which confirms that an increase in poverty leads to an increase in environmental degradation,especially in deforestation and PM2.5 emissions.Similarly,the increase in environmental degradation positively affects poverty in SSA.We also confirmed that exogenous conditioning factors such as population growth rate,education,industrialization,and income inequality,institutional quality indicators such as governance effectiveness,control of corruption,freedom ad civil liberty,and democracy,and endogenous factors including fossil fuel energy use,fuelwood energy use,household health expenditure,infant mortality rate,and agriculture productivity influence the nexus between poverty and environmental degradation.The findings on the relationship between poverty and environmental degradation in SSA are a testimonial evidence that both poverty and environmental degradation are significant issues in SSA.Hence,poverty alleviation policies in SSA should not lead to PM2.5 emissions and deforestation,which may as well force people into a poverty-environmental degradation trap.Instead,poverty reduction policies should simultaneously achieve environmental conservation.
文摘This study is connected with new Generalized Maximum Fuzzy Entropy Methods (GMax(F)EntM) in the form of MinMax(F)EntM and MaxMax(F)EntM belonging to us. These methods are based on primary maximizing Max(F)Ent measure for fixed moment vector function in order to obtain the special functional with maximum values of Max(F)Ent measure and secondary optimization of mentioned functional with respect to moment vector functions. Distributions, in other words sets of successive values of estimated membership function closest to (furthest from) the given membership function in the sense of Max(F)Ent measure, obtained by mentioned methods are defined as (MinMax(F)Ent)m which is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given membership function. The aim of this study consists of applying MinMax(F)EntM and MaxMax(F)EntM on given wind speed data. Obtained results are realized by using MATLAB programme. The performances of distributions (MinMax(F)En0m and (MaxMax(F)Ent)m generated by using Generalized Maximum Fuzzy Entropy Methods are established by Chi-Square, Root Mean Square Error criterias and Max(F)Ent measure.