期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Coherence Based Sufficient Condition for Support Recovery Using Generalized Orthogonal Matching Pursuit
1
作者 Aravindan Madhavan Yamuna Govindarajan Neelakandan Rajamohan 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2049-2058,共10页
In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)... In an underdetermined system,compressive sensing can be used to recover the support vector.Greedy algorithms will recover the support vector indices in an iterative manner.Generalized Orthogonal Matching Pursuit(GOMP)is the generalized form of the Orthogonal Matching Pursuit(OMP)algorithm where a number of indices selected per iteration will be greater than or equal to 1.To recover the support vector of unknown signal‘x’from the compressed measurements,the restricted isometric property should be satisfied as a sufficient condition.Finding the restricted isometric constant is a non-deterministic polynomial-time hardness problem due to that the coherence of the sensing matrix can be used to derive the sufficient condition for support recovery.In this paper a sufficient condition based on the coherence parameter to recover the support vector indices of an unknown sparse signal‘x’using GOMP has been derived.The derived sufficient condition will recover support vectors of P-sparse signal within‘P’iterations.The recovery guarantee for GOMP is less restrictive,and applies to OMP when the number of selection elements equals one.Simulation shows the superior performance of the GOMP algorithm compared with other greedy algorithms. 展开更多
关键词 Compressed sensing restricted isometric constant generalized orthogonal matching pursuit support recovery recovery guarantee COHERENCE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部