Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. U...Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.展开更多
Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we ...Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.展开更多
In this paper,we first introduce the notion of n-generalized Hartogs triangles.Then,we characterize proper holomorphic mappings between some of these domains,and describe their automorphism groups.
In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epideriva...In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epiderivative is obtained. Finally, as the applications of this property, we use the contingent epiderivative to establish optimality conditions of the set-valued optimization problem with generalized cone convex set-valued maps in the sense of Henig proper efficiency. The results obtained in this paper generalize and improve some known results in the literature.展开更多
文摘Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.
文摘Let G be a generalized matrix algebra over a commutative ring R and Z(G) be the center of G. Suppose that F, T :G→G are two co-commuting R-linear mappings, i.e., F(x)x = xT(x) for all x ∈ G. In this note, we study the question of when co-commuting mappings on G are proper.
基金supported by the National Natural Science Foundation of China(Grant No.11871333)。
文摘In this paper,we first introduce the notion of n-generalized Hartogs triangles.Then,we characterize proper holomorphic mappings between some of these domains,and describe their automorphism groups.
基金supported by the National Nature Science Foundation of China(11431004,11471291)the General Project of Chongqing Frontier and Applied Foundation Research(cstc2015jcyj A00050)the Key Project of Chongqing Frontier and Applied Foundation Research(cstc2017jcyj BX0055,cstc2015jcyj BX0113)
文摘In this paper, firstly, a new notion of generalized cone convex set-valued map is introduced in real normed spaces. Secondly, a property of the generalized cone convex set-valued map involving the contingent epiderivative is obtained. Finally, as the applications of this property, we use the contingent epiderivative to establish optimality conditions of the set-valued optimization problem with generalized cone convex set-valued maps in the sense of Henig proper efficiency. The results obtained in this paper generalize and improve some known results in the literature.