In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a posit...In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a positive global minimum,and K∈C(R^N)∩L∞(R^N)has a positive global maximum.By using a change of variable,we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay.展开更多
基金supported by the National Natural Science Foundation of China(11661053,11771198,11901345,11901276,11961045 and 11971485)partly by the Provincial Natural Science Foundation of Jiangxi,China(20161BAB201009 and 20181BAB201003)+1 种基金the Outstanding Youth Scientist Foundation Plan of Jiangxi(20171BCB23004)the Yunnan Local Colleges Applied Basic Research Projects(2017FH001-011).
文摘In this article,we study the generalized quasilinear Schrodinger equation-div(ε^2g^2(u)▽u)+ε^2g(u)g′(u)|▽u|^2+V(x)u=K(x)|u|^p-2u,x∈R^N where A≥3,e>0,4<p<,22*,g∈C 1(R,R+),V∈C(R^N)∩L∞(R^N)has a positive global minimum,and K∈C(R^N)∩L∞(R^N)has a positive global maximum.By using a change of variable,we obtain the existence and concentration behavior of ground state solutions for this problem and establish a phenomenon of exponential decay.