期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
1
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
Identification of Type of a Fault in Distribution System Using Shallow Neural Network with Distributed Generation
2
作者 Saurabh Awasthi Gagan Singh Nafees Ahamad 《Energy Engineering》 EI 2023年第4期811-829,共19页
A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stab... A distributed generation system(DG)has several benefits over a traditional centralized power system.However,the protection area in the case of the distributed generator requires special attention as it encounters stability loss,failure re-closure,fluctuations in voltage,etc.And thereby,it demands immediate attention in identifying the location&type of a fault without delay especially when occurred in a small,distributed generation system,as it would adversely affect the overall system and its operation.In the past,several methods were proposed for classification and localisation of a fault in a distributed generation system.Many of those methods were accurate in identifying location,but the accuracy in identifying the type of fault was not up to the acceptable mark.The proposed work here uses a shallow artificial neural network(sANN)model for identifying a particular type of fault that could happen in a specific distribution network when used in conjunction with distributed generators.Firstly,a distribution network consisting of two similar distributed generators(DG1 and DG2),one grid,and a 100 Km distribution line is modeled.Thereafter,different voltages and currents corresponding to various faults(line to line,line to ground)at different locations are tabulated,resulting in a matrix of 500×18 inputs.Secondly,the sANN is formulated for identifying the types of faults in the system in which the above-obtained data is used to train,validate,and test the neural network.The overall result shows an unprecedented almost zero percent error in identifying the type of the faults. 展开更多
关键词 distribution network distributed generation power system modeling fault identification neural network renewable energy systems
下载PDF
Economic Power Dispatching from Distributed Generations: Review of Optimization Techniques
3
作者 Paramjeet Kaur Krishna Teerth Chaturvedi Mohan Lal Kolhe 《Energy Engineering》 EI 2024年第3期557-579,共23页
In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent... In the increasingly decentralized energy environment,economical power dispatching from distributed generations(DGs)is crucial to minimizing operating costs,optimizing resource utilization,and guaranteeing a consistent and sustainable supply of electricity.A comprehensive review of optimization techniques for economic power dispatching from distributed generations is imperative to identify the most effective strategies for minimizing operational costs while maintaining grid stability and sustainability.The choice of optimization technique for economic power dispatching from DGs depends on a number of factors,such as the size and complexity of the power system,the availability of computational resources,and the specific requirements of the application.Optimization techniques for economic power dispatching from distributed generations(DGs)can be classified into two main categories:(i)Classical optimization techniques,(ii)Heuristic optimization techniques.In classical optimization techniques,the linear programming(LP)model is one of the most popular optimization methods.Utilizing the LP model,power demand and network constraints are met while minimizing the overall cost of generating electricity from DGs.This approach is efficient in determining the best DGs dispatch and is capable of handling challenging optimization issues in the large-scale system including renewables.The quadratic programming(QP)model,a classical optimization technique,is a further popular optimization method,to consider non-linearity.The QP model can take into account the quadratic cost of energy production,with consideration constraints like network capacity,voltage,and frequency.The metaheuristic optimization techniques are also used for economic power dispatching from DGs,which include genetic algorithms(GA),particle swarm optimization(PSO),and ant colony optimization(ACO).Also,Some researchers are developing hybrid optimization techniques that combine elements of classical and heuristic optimization techniques with the incorporation of droop control,predictive control,and fuzzy-based methods.These methods can deal with large-scale systems with many objectives and non-linear,non-convex optimization issues.The most popular approaches are the LP and QP models,while more difficult problems are handled using metaheuristic optimization techniques.In summary,in order to increase efficiency,reduce costs,and ensure a consistent supply of electricity,optimization techniques are essential tools used in economic power dispatching from DGs. 展开更多
关键词 Economic power dispatching distributed generations decentralized energy cost minimization optimization techniques
下载PDF
Comprehensive Benefit Evaluation of SZ Distributed Photovoltaic Power Generation Project Based on AHP-Matter-Element Extension Model
4
作者 Shuli Jing 《Journal of Electronic Research and Application》 2024年第1期60-68,共9页
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen... With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects. 展开更多
关键词 Distributed photovoltaic power generation Comprehensive benefits EVALUATION
下载PDF
Evaluation of intermittent-distributed-generation hosting capability of a distribution system with integrated energy-storage systems 被引量:2
5
作者 Weimin Zheng Bo Zou 《Global Energy Interconnection》 CSCD 2021年第4期415-424,共10页
The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an... The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined. 展开更多
关键词 Distributed generation Robust optimization Hosting capability Reactive power regulation Energy storage system
下载PDF
Research on Coordinated Development and Optimization of Distribution Networks at All Levels in Distributed Power Energy Engineering 被引量:1
6
作者 Zhuohan Jiang Jingyi Tu +2 位作者 Shuncheng Liu Jian Peng Guang Ouyang 《Energy Engineering》 EI 2023年第7期1655-1666,共12页
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute... The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales. 展开更多
关键词 Distributed power generation energy engineering multiple time scales joint development of distribution network global optimization regional autonomy
下载PDF
Optimal Intelligent Reconfiguration of Distribution Network in the Presence of Distributed Generation and Storage System
7
作者 Gang Lei Chunxiang Xu 《Energy Engineering》 EI 2022年第5期2005-2029,共25页
In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration pr... In the present paper,the distribution feeder reconfiguration in the presence of distributed generation resources(DGR)and energy storage systems(ESS)is solved in the dynamic form.Since studies on the reconfiguration problem have ignored the grid security and reliability,the non-distributed energy index along with the energy loss and voltage stability indices has been assumed as the objective functions of the given problem.To achieve the mentioned benefits,there are several practical plans in the distribution network.One of these applications is the network rearrangement plan,which is the simplest and least expensive way to add equipment to the network.Besides,by adding the DGRs to the distribution grid,the radial mode of the grid and the one-sided passage of power are eliminated,and the ordinary and simple grid is replaced with a complex grid.In this paper,an improved particle clustering algorithm is used to solve the distribution network rearrangement problem with the presence of distributed generation sources.The PQ model and the PV model are both considered,and for this purpose,a model based on the compensation technique is used to model the PV busbars.The proposed developed model has particularly improved the local and global search of this algorithm.The reconfiguration problem is discussed and investigated considering different scenarios in a standard 33-bus grid as a well-known power system in different scenarios in the presence and absence of the DGRs.Then,the obtained results are compared. 展开更多
关键词 RECONFIGURATION distributed generation resources(DGRs) fuzzy modeling developed particle swarm optimization(PSO)algorithm
下载PDF
Distributed Generation Islanding Effect on Distribution Networks and End User Loads Using the Master-Slave Islanding Method
8
作者 Lambros Ekonomou George P. Fotis +1 位作者 Vasiliki Vita Valeri Mladenov 《Journal of Power and Energy Engineering》 2016年第10期1-24,共24页
This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units d... This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages. 展开更多
关键词 Distributed generation distribution Networks ISLANDING Master-Slave Islanding Method Neplan Simulation Tool
下载PDF
Analysis and Power Quality Improvement in Hybrid Distributed Generation System with Utilization of Unified Power Quality Conditioner
9
作者 Noor Zanib Munira Batool +4 位作者 Saleem Riaz Farkhanda Afzal Sufian Munawar Ibtisam Daqqa Najma Saleem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1105-1136,共32页
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u... This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink. 展开更多
关键词 PHOTOVOLTAIC wind turbine unified power quality conditioner power flow distributed generation system
下载PDF
Network Reconfiguration for Load Balancing in Distribution System with Distributed Generation and Capacitor Placement
10
作者 Thong Lantharthong Nattachote Rugthaicharoenchep 《Journal of Energy and Power Engineering》 2013年第8期1562-1570,共9页
This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is use... This paper presents an efficient algorithm for optimization of radial distribution systems by a network reconfiguration to balance feeder loads and eliminate overload conditions. The system load-balancing index is used to determine the loading conditions of the system and maximum system loading capacity. The index value has to be minimum in the optimal network reconfiguration of load balancing. The tabu search algorithm is employed to search for the optimal network reconfiguration. The basic idea behind the search is a move from a current solution to its neighborhood by effectively utilizing a memory to provide an efficient search for optimality. It presents low computational effort and is able to find good quality configurations. Simulation results for a radial 69-bus system. The study results show that the optimal on/off patterns of the switches can be identified to give the best network reconfiguration involving balancing of feeder loads while respecting all the constraints. 展开更多
关键词 Network reconfiguration distributed generation capacitor placement load balancing optimization technique.
下载PDF
Distributed Generation Influence on Power Distribution System Development in Poland
11
作者 Maksymilian Przygrodzki 《Journal of Energy and Power Engineering》 2012年第9期1509-1514,共6页
A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current an... A lot of individual electricity sources of small power common (called distributed generation) occurred in Polish power sector during the last period. Gradual increases of distributed generation will cover current and future demand of consumers as well as allow to keep essential reserves in distribution and transmission grids. Emphasizing on this problem can upgrade economic efficiency and grid significance of distributed generation for investors and distribution utilities in Poland. 展开更多
关键词 Distributed generation grid connection power system development.
下载PDF
Control of Distributed Generation Using Non-Sinusoidal Pulse Width Modulation
12
作者 Mehrdad Ahmadi Kamarposhti Phatiphat Thounthong +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2023年第2期4149-4164,共16页
The islanded mode is one of the connection modes of the grid distributed generation resources.In this study,a distributed generation resource is connected to linear and nonlinear loads via a three-phase inverter where... The islanded mode is one of the connection modes of the grid distributed generation resources.In this study,a distributed generation resource is connected to linear and nonlinear loads via a three-phase inverter where a control method needing no current sensors or compensator elements is applied to the distribute generation system in the islanded mode.This control method has two main loops in each phase.The first loop controls the voltage control loops that adjust the three-phase point of common coupling,the amplitude of the non-sinusoidal reference waveform and the near-state pulse width modulation(NSPWM)method.The next loop compensates the harmonic compensator loop that calculates the voltage harmonics of the point of common coupling in each phase,and injects them to compensate the non-sinusoidal reference waveforms of each phase.The simulation results in MATLAB/SIMULINK show that this method can generate balanced threephase sinusoidal voltage with an acceptable total harmonic distortion(THD)at the joint connection point. 展开更多
关键词 Islanded mode distributed generation resource the point of common coupling voltage total harmonic distortion
下载PDF
Utilization of DFIG on an Islanded Power Generation and Distribution System
13
作者 Rene Rossi Mohammad Masoum 《Journal of Energy and Power Engineering》 2014年第1期166-175,共10页
The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects... The utilization of wind generation equipment, such as DFIGs (double fed induction generators), interconnected to islanded power generation and distribution systems is investigated in order to determine their effects on the overall system operating characteristics and stability. The use of a stable power station (with high speed machines) will be critical in achieving fast and reliable transient response to network events, in particular, when large transient loads are expected on a continuous basis, i.e., industrial mining and mineral processing equipment. Simulation results of this paper assist in understanding how small power stations and wind generation equipment respond to large transients in an islanded network. In particular, detailed simulations and analyses will be presented on impacts of distributed wind generation units (1.5 MW DF1G) on the stability of a small weak network. The novelty of this paper is on detailed analyses and simulation of weak networks with interconnects DFIG's including their impacts on system stability under various transient operating conditions. 展开更多
关键词 Grid system weak network DG (distributed generation DFIG (double fed induction generator) DOL (direct on line) VVVF (variable voltage variable frequency) CFCT (critical fault clearing time).
下载PDF
Optimal Placement and Sizing of Distributed Generations for Power Losses Minimization Using PSO-Based Deep Learning Techniques
14
作者 Bello-Pierre Ngoussandou Nicodem Nisso +1 位作者 Dieudonné Kaoga Kidmo   Kitmo 《Smart Grid and Renewable Energy》 2023年第9期169-181,共13页
The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations ar... The integration of distributed generations (DGs) into distribution systems (DSs) is increasingly becoming a solution for compensating for isolated local energy systems (ILESs). Additionally, distributed generations are used for self-consumption with excess energy injected into centralized grids (CGs). However, the improper sizing of renewable energy systems (RESs) exposes the entire system to power losses. This work presents an optimization of a system consisting of distributed generations. Firstly, PSO algorithms evaluate the size of the entire system on the IEEE bus 14 test standard. Secondly, the size of the system is allocated using improved Particles Swarm Optimization (IPSO). The convergence speed of the objective function enables a conjecture to be made about the robustness of the proposed system. The power and voltage profile on the IEEE 14-bus standard displays a decrease in power losses and an appropriate response to energy demands (EDs), validating the proposed method. 展开更多
关键词 Distributed generations Deep Learning Techniques Improved Particle Swarm Optimization Power Losses Power Losses Minimization Optimal Placement
下载PDF
Configuration optimization model of multi-energy distributed generation system 被引量:2
15
作者 徐青山 徐敏姣 +1 位作者 李国栋 蒋菱 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期182-188,共7页
To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model... To integrate different renewable energy resources effectively in a microgrid, a configuration optimization model of a multi-energy distributed generation(DG) system and its auxiliary equipment is proposed. The model mainly consists of two parts, the determination of initial configuration schemes according to user preference and the selection of the optimal scheme. The comprehensive evaluation index(CEI), which is acquired through the analytic hierarchy process(AHP) weight calculation method, is adopted as the evaluation criterion to rank the initial schemes. The optimal scheme is obtained according to the ranking results. The proposed model takes the diversity of different equipment parameters and investment cost into consideration and can give relatively suitable and economical suggestions for system configuration.Additionally, unlike Homer Pro, the proposed model considers the complementation of different renewable energy resources, and thus the rationality of the multi-energy DG system is improved compared with the single evaluation criterion method which only considers the total cost. 展开更多
关键词 multi-energy complementation distributed generation(DG) optimal configuration energy management comprehensive evaluation index(CEI) analytic hierarchy process(AHP)
下载PDF
Inverse-time Backup Protection Based on Unified Characteristic Equation for Distribution Networks with High Proportion of Distributed Generations
16
作者 Nana Chang Guobing Song +2 位作者 Zhongxue Chang Yuping Zheng Xingang Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期202-212,共11页
The setting work of backup protection using steady-state current is tedious,and mismatches occasionally occur due to the increased proportion of distributed generations(DGs)connected to the power grid.Thus,there is a ... The setting work of backup protection using steady-state current is tedious,and mismatches occasionally occur due to the increased proportion of distributed generations(DGs)connected to the power grid.Thus,there is a practical need to study a backup protection technology that does not require step-by-step setting and can be adaptively coordinated.This paper proposes an action sequence adaptive to fault positions that uses only positive sequence fault component(PSFC)voltage.Considering the influence of DGs,the unified time dial setting can be obtained by selecting specific points.The protection performance is improved by using the adjacent upstream and downstream protections to meet the coordination time interval in the case of metallic faults at the near-and far-ends of the line.Finally,the expression and implementation scheme for inverse-time backup protection(ITBP)based on the unified characteristic equation is given.Simulation results show that this scheme can adapt to DG penetration scenarios and can realize the adaptive coordination of multi-level relays. 展开更多
关键词 Inverse-time backup protection(ITBP) distributed generation(DG) positive sequence fault component(PSFC)voltage unified characteristic equation adaptive coordination
原文传递
Enhancing Autonomy Capability in Regional Power Grids:A Strategic Planning Approach with Multiple Autonomous Evaluation Indexes
17
作者 Jie Ma Tong Zhao +8 位作者 Yuanzhao Hao Wenwen Qin Haozheng Yu Mingxuan Du Yuanhong Liu Liang Zhang Shixia Mu Cuiping Li Junhui Li 《Energy Engineering》 EI 2024年第9期2449-2477,共29页
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de... After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network. 展开更多
关键词 Regional autonomous power grid distributed generation distributed energy storage regional planning strategy evaluation index
下载PDF
Optimal Location and Sizing ofMulti-Resource Distributed Generator Based onMulti-Objective Artificial Bee Colony Algorithm
18
作者 Qiangfei Cao Huilai Wang +1 位作者 Zijia Hui Lingyun Chen 《Energy Engineering》 EI 2024年第2期499-521,共23页
Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in t... Distribution generation(DG)technology based on a variety of renewable energy technologies has developed rapidly.A large number of multi-type DG are connected to the distribution network(DN),resulting in a decline in the stability of DN operation.It is urgent to find a method that can effectively connect multi-energy DG to DN.photovoltaic(PV),wind power generation(WPG),fuel cell(FC),and micro gas turbine(MGT)are considered in this paper.A multi-objective optimization model was established based on the life cycle cost(LCC)of DG,voltage quality,voltage fluctuation,system network loss,power deviation of the tie-line,DG pollution emission index,and meteorological index weight of DN.Multi-objective artificial bee colony algorithm(MOABC)was used to determine the optimal location and capacity of the four kinds of DG access DN,and compared with the other three heuristic algorithms.Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node,the total voltage deviation,voltage fluctuation,and system network loss of DN decreased by 49.67%,7.47%and 48.12%,respectively,compared with that without DG configuration.In the IEEE 69 test node,the total voltage deviation,voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%,35.93%and 75.17%,respectively,compared with that without DG configuration,indicating that MOABC can reasonably plan the capacity and location of DG.Achieve the maximum trade-off between DG economy and DN operation stability. 展开更多
关键词 Distributed generation distribution network life cycle cost multi-objective artificial bee colony algorithm voltage stability
下载PDF
Coordinated voltage regulation strategy of OLTC and BESS considering switching delay
19
作者 徐振宇 HUA Yongzhu +1 位作者 CUI Jiadong LI Chuangwei 《High Technology Letters》 EI CAS 2024年第2期138-145,共8页
When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap change... When large-scale distributed renewable energy power generation systems are connected to the power grid,the risk of grid voltage fluctuations and exceeding the limit increases greatly.Fortunately,the on-load tap changer(OLTC)can adjust the transformer winding tap to maintain the secondary side voltage within the normal range.However,the inevitable delay in switching transformer taps makes it difficult to respond quickly to voltage fluctuations.Moreover,switching the transformer taps frequently will decrease the service life of OLTC.In order to solve this critical issue,a cooperative voltage regulation strategy applied between the battery energy storage systems(BESSs)and OLTSs.is proposed By adjusting the charge and discharge power of BESSs,the OLTC can frequently switch the transformer taps to achieve rapid voltage regulation.The effectiveness of the proposed coordinated regulation strategy is verified in the IEEE 33 node distribution systems.The simulation results show that the proposed coordinated regulation strategy can stabilize the voltage of the distribution network within a normal range and reduce the frequency of tap switching,as such elongating the service life of the equipment. 展开更多
关键词 distributed power generation voltage regulation distribution network on-load tapcharger(OLTC) battery energy storage system(BESS)
下载PDF
Load distribution model and voltage static profile of Smart Grid 被引量:3
20
作者 孙秋野 李钟旭 +1 位作者 杨珺 罗艳红 《Journal of Central South University》 SCIE EI CAS 2010年第4期824-829,共6页
Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profi... Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point. 展开更多
关键词 Smart Grid distributed generation typical load distribution model voltage profile
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部