期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Generative Adversarial Networks for Secure Data Transmission in Wireless Network
1
作者 E.Jayabalan R.Pugazendi 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3757-3784,共28页
In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision th... In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision that automati-cally adapts to the transmission dynamics to mitigate the launched jamming attacks.The generative adversarial learning neural network(GALNN)or genera-tive dynamic neural network(GDNN)automatically learns with the synthesized training data(training)with a generator and discriminator type neural networks that encompass minimax game theory.The elimination of the jamming attack is carried out with the assistance of the defense strategies and with an increased detection rate in the generative adversarial network(GAN).The GDNN with game theory is designed to validate the channel condition with the cross entropy loss function and back-propagation algorithm,which improves the communica-tion reliability in the network.The simulation is conducted in NS2.34 tool against several performance metrics to reduce the misdetection rate and false alarm rates.The results show that the GDNN obtains an increased rate of successful transmis-sion by taking optimal actions to act as a defense mechanism to mislead the jam-mer,where the jammer makes high misclassification errors on transmission dynamics. 展开更多
关键词 generative adversarial learning neural network JAMMER Minimax game theory ATTACKS
下载PDF
Solar image deconvolution by generative adversarial network 被引量:1
2
作者 Long Xu Wen-Qing Sun +1 位作者 Yi-Hua Yan Wei-Qiang Zhang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第11期182-190,共9页
With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a s... With aperture synthesis(AS)technique,a number of small antennas can be assembled to form a large telescope whose spatial resolution is determined by the distance of two farthest antennas instead of the diameter of a single-dish antenna.In contrast from a direct imaging system,an AS telescope captures the Fourier coefficients of a spatial object,and then implement inverse Fourier transform to reconstruct the spatial image.Due to the limited number of antennas,the Fourier coefficients are extremely sparse in practice,resulting in a very blurry image.To remove/reduce blur,“CLEAN”deconvolution has been widely used in the literature.However,it was initially designed for a point source.For an extended source,like the Sun,its efficiency is unsatisfactory.In this study,a deep neural network,referring to Generative Adversarial Network(GAN),is proposed for solar image deconvolution.The experimental results demonstrate that the proposed model is markedly better than traditional CLEAN on solar images.The main purpose of this work is visual inspection instead of quantitative scientific computation.We believe that this will also help scientists to better understand solar phenomena with high quality images. 展开更多
关键词 deep learning(DL)generative adversarial network(GAN)solar radio astronomy
下载PDF
GACS:Generative Adversarial Imitation Learning Based on Control Sharing
3
作者 Huaiwei SI Guozhen TAN +1 位作者 Dongyu LI Yanfei PENG 《Journal of Systems Science and Information》 CSCD 2023年第1期78-93,共16页
Generative adversarial imitation learning(GAIL)directly imitates the behavior of experts from human demonstration instead of designing explicit reward signals like reinforcement learning.Meanwhile,GAIL overcomes the d... Generative adversarial imitation learning(GAIL)directly imitates the behavior of experts from human demonstration instead of designing explicit reward signals like reinforcement learning.Meanwhile,GAIL overcomes the defects of traditional imitation learning by using a generative adversary network framework and shows excellent performance in many fields.However,GAIL directly acts on immediate rewards,a feature that is reflected in the value function after a period of accumulation.Thus,when faced with complex practical problems,the learning efficiency of GAIL is often extremely low and the policy may be slow to learn.One way to solve this problem is to directly guide the action(policy)in the agents'learning process,such as the control sharing(CS)method.This paper combines reinforcement learning and imitation learning and proposes a novel GAIL framework called generative adversarial imitation learning based on control sharing policy(GACS).GACS learns model constraints from expert samples and uses adversarial networks to guide learning directly.The actions are produced by adversarial networks and are used to optimize the policy and effectively improve learning efficiency.Experiments in the autonomous driving environment and the real-time strategy game breakout show that GACS has better generalization capabilities,more efficient imitation of the behavior of experts,and can learn better policies relative to other frameworks. 展开更多
关键词 generative adversarial imitation learning reinforcement learning control sharing deep reinforcement learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部