期刊文献+
共找到1,110篇文章
< 1 2 56 >
每页显示 20 50 100
Data-augmented landslide displacement prediction using generative adversarial network 被引量:1
1
作者 Qi Ge Jin Li +2 位作者 Suzanne Lacasse Hongyue Sun Zhongqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4017-4033,共17页
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit... Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. 展开更多
关键词 Machine learning(ML) Time series generative adversarial network(gan) Three Gorges reservoir(TGR) Landslide displacement prediction
下载PDF
A generative adversarial network-based unified model integrating bias correction and downscaling for global SST
2
作者 Shijin Yuan Xin Feng +3 位作者 Bin Mu Bo Qin Xin Wang Yuxuan Chen 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第1期45-52,共8页
本文提出了一种基于生成对抗网络的全球海表面温度(sea surface temperature,SST)偏差订正及降尺度整合模型.该模型的生成器使用偏差订正模块将数值模式预测结果进行校正,再用可复用的共享降尺度模块将订正后的数据分辨率逐次提高.该模... 本文提出了一种基于生成对抗网络的全球海表面温度(sea surface temperature,SST)偏差订正及降尺度整合模型.该模型的生成器使用偏差订正模块将数值模式预测结果进行校正,再用可复用的共享降尺度模块将订正后的数据分辨率逐次提高.该模型的判别器可鉴别偏差订正及降尺度结果的质量,以此为标准进行对抗训练。同时,在对抗损失函数中含有物理引导的动力学惩罚项以提高模型的性能.本研究基于分辨率为1°的GFDL SPEAR模式的SST预测结果,选择遥感系统(Remote Sensing System)的观测资料作为真值,面向月尺度ENSO与IOD事件以及天尺度海洋热浪事件开展了验证试验:模型在将分辨率提高到0.0625°×0.0625°的同时将预测误差减少约90.3%,突破了观测数据分辨率的限制,且与观测结果的结构相似性高达96.46%. 展开更多
关键词 偏差订正 降尺度 海表面温度 生成对抗网络 物理引导的神经网络
下载PDF
Delineation of Integrated Anomaly with Generative Adversarial Networks and Deep Neural Networks in the Zhaojikou Pb-Zn Ore District,Southeast China
3
作者 DUAN Jilin LIU Yanpeng +4 位作者 ZHU Lixin MA Shengming GONG Qiuli Alla DOLGOPOLOVA Simone A.LUDWIG 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1252-1267,共16页
Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/... Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously. 展开更多
关键词 deep learning deep neural networks generative adversarial networks geochemical map Pb-Zn deposit
下载PDF
Automated Video Generation of Moving Digits from Text Using Deep Deconvolutional Generative Adversarial Network
4
作者 Anwar Ullah Xinguo Yu Muhammad Numan 《Computers, Materials & Continua》 SCIE EI 2023年第11期2359-2383,共25页
Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for tem... Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input. 展开更多
关键词 generative adversarial network(gan) deconvolutional neural network convolutional neural network Inception Score(IS) temporal coherence Fréchet Inception Distance(FID) generative adversarial Metric(GAM)
下载PDF
Feature-Based Augmentation in Sarcasm Detection Using Reverse Generative Adversarial Network
5
作者 Derwin Suhartono Alif Tri Handoyo Franz Adeta Junior 《Computers, Materials & Continua》 SCIE EI 2023年第12期3637-3657,共21页
Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication.This study addresses challenges associated with small datasets and class imba... Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication.This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network(GAN)based augmentation on diverse datasets,including iSarcasm,SemEval-18,and Ghosh.This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network(RGAN).The proposed RGAN method works by inverting labels between original and synthetic data during the training process.This inversion of labels provides feedback to the generator for generating high-quality data closely resembling the original distribution.Notably,the proposed RGAN model exhibits performance on par with standard GAN,showcasing its robust efficacy in augmenting text data.The exploration of various datasets highlights the nuanced impact of augmentation on model performance,with cautionary insights into maintaining a delicate balance between synthetic and original data.The methodological framework encompasses comprehensive data pre-processing and GAN-based augmentation,with a meticulous comparison against Natural Language Processing Augmentation(NLPAug)as an alternative augmentation technique.Overall,the F1-score of our proposed technique outperforms that of the synonym replacement augmentation technique using NLPAug.The increase in F1-score in experiments using RGAN ranged from 0.066%to 1.054%,and the use of standard GAN resulted in a 2.88%increase in F1-score.The proposed RGAN model outperformed the NLPAug method and demonstrated comparable performance to standard GAN,emphasizing its efficacy in text data augmentation. 展开更多
关键词 Data augmentation generative adversarial network(gan) Reverse gan(Rgan) sarcasm detection
下载PDF
A Sketch-Based Generation Model for Diverse Ceramic Tile Images Using Generative Adversarial Network
6
作者 Jianfeng Lu Xinyi Liu +2 位作者 Mengtao Shi Chen Cui Mahmoud Emam 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2865-2882,共18页
Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this... Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this paper,we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network(GAN).The generated tile images can be tailored to meet the specific needs of the user for the tile textures.The proposed method consists of four steps.Firstly,a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.Secondly,for each ceramic tile image in the dataset,the corresponding sketch image is generated and then the mapping relationship between the images is trained based on a sketch extraction network using ResNet Block and jump connection to improve the quality of the generated sketches.Thirdly,the sketch style is redefined according to the characteristics of the ceramic tile images and then double cross-domain adversarial loss functions are employed to guide the ceramic tile generation network for fitting in the direction of the sketch style and to improve the training speed.Finally,we apply hidden space perturbation and interpolation for further enriching the output textures style and satisfying the concept of“one style with multiple faces”.We conduct the training process of the proposed generation network on 2583 ceramic tile images dataset.To measure the generative diversity and quality,we use Frechet Inception Distance(FID)and Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)metrics.The experimental results prove that the proposed model greatly enhances the generation results of the ceramic tile images,with FID of 32.47 and BRISQUE of 28.44. 展开更多
关键词 Ceramic tile pattern design cross-domain learning deep learning gan generative adversarial networks ResNet Block
下载PDF
Generative Adversarial Networks for Secure Data Transmission in Wireless Network
7
作者 E.Jayabalan R.Pugazendi 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3757-3784,共28页
In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision th... In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision that automati-cally adapts to the transmission dynamics to mitigate the launched jamming attacks.The generative adversarial learning neural network(GALNN)or genera-tive dynamic neural network(GDNN)automatically learns with the synthesized training data(training)with a generator and discriminator type neural networks that encompass minimax game theory.The elimination of the jamming attack is carried out with the assistance of the defense strategies and with an increased detection rate in the generative adversarial network(GAN).The GDNN with game theory is designed to validate the channel condition with the cross entropy loss function and back-propagation algorithm,which improves the communica-tion reliability in the network.The simulation is conducted in NS2.34 tool against several performance metrics to reduce the misdetection rate and false alarm rates.The results show that the GDNN obtains an increased rate of successful transmis-sion by taking optimal actions to act as a defense mechanism to mislead the jam-mer,where the jammer makes high misclassification errors on transmission dynamics. 展开更多
关键词 generative adversarial learning neural network JAMMER Minimax game theory ATTACKS
下载PDF
MACDCGAN的发电机轴承故障诊断方法
8
作者 曹洁 尹浩楠 王进花 《振动与冲击》 EI CSCD 北大核心 2024年第11期227-235,共9页
在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成... 在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成对抗网络(MACDCGAN)的故障诊断方法。通过对采集的一维时序信号进行小波变换增强特征,构建简化结构参数的条件深度卷积生成对抗网络模型生成样本,并在模型中采用Wasserstein距离优化损失函数解决训练过程中存在模式崩塌和梯度消失的缺点;通过添加一个独立的分类器来改进分类模型的兼容性,并在分类器中引入学习率衰减算法增加模型稳定性。试验结果表明,该方法可以有效地提高故障诊断的精度,并且验证了所提模型具有良好的泛化性能。 展开更多
关键词 发电机 特征提取 生成对抗网络(gan) 卷积神经网络(CNN) 故障诊断
下载PDF
基于WGAN-GP-CNN的海面小目标检测
9
作者 时艳玲 陶平 许述文 《信号处理》 CSCD 北大核心 2024年第6期1082-1097,共16页
针对传统基于统计理论的海面小目标检测方法在复杂海面环境中性能不高的问题,该文提出了一种改进的检测方法。首先通过分析海杂波和目标回波的特征,将检测问题转化为特征空间的分类任务。鉴于海面小目标样本数量有限,存在样本不平衡的问... 针对传统基于统计理论的海面小目标检测方法在复杂海面环境中性能不高的问题,该文提出了一种改进的检测方法。首先通过分析海杂波和目标回波的特征,将检测问题转化为特征空间的分类任务。鉴于海面小目标样本数量有限,存在样本不平衡的问题,该文引入了一种基于梯度惩罚的沃瑟斯坦生成对抗网络(Wasserstein Generative Adversarial Network with Gradient Penalty,WGAN-GP)来增强目标数据,从而在数量上平衡目标样本与海杂波样本。同时,对原始WGAN-GP网络的损失函数进行了改进,引入相位损失以确保生成数据能够反映真实数据的相位信息。基于这些数据,进一步提取了生成目标和海杂波的高维特征,并将其送入卷积神经网络(Convolutional Neural Network,CNN)进行训练。为了应对高维特征空间中虚警概率难以控制的问题,对CNN算法进行了改进,通过设置Softmax分类器的阈值,实现了虚警概率可控。最后,借助公开的IPIX雷达数据集进行实验验证,所提的WGAN-GP-CNN检测器在积累时间为1.024 s,虚警概率为0.001时,平均检测概率达到0.8683,具有良好的检测效果。 展开更多
关键词 海杂波 小目标检测 虚警可控 生成对抗网络 卷积神经网络
下载PDF
基于Transformer和GAN的对抗样本生成算法 被引量:1
10
作者 刘帅威 李智 +1 位作者 王国美 张丽 《计算机工程》 CAS CSCD 北大核心 2024年第2期180-187,共8页
对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强... 对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强大的视觉表征能力,将其作为重构网络,用于接收干净图像并生成攻击噪声;其次将Transformer重构网络作为生成器,与基于深度卷积网络的鉴别器相结合组成GAN网络架构,提高生成图像的真实性并保证训练的稳定性,同时提出改进的注意力机制Targeted Self-Attention,在训练网络时引入目标标签作为先验知识,指导网络模型学习生成具有特定攻击目标的对抗扰动;最后利用跳转连接将对抗噪声施加在干净样本上,形成对抗样本,攻击目标分类网络。实验结果表明:Trans-GAN算法针对MNIST数据集中2种模型的攻击成功率都达到99.9%以上,针对CIFAR10数据集中2种模型的攻击成功率分别达到96.36%和98.47%,优于目前先进的基于生成式的对抗样本生成方法;相比快速梯度符号法和投影梯度下降法,Trans-GAN算法生成的对抗噪声扰动量更小,形成的对抗样本更加自然,满足人类视觉不易分辨的要求。 展开更多
关键词 深度神经网络 对抗样本 对抗攻击 Transformer模型 生成对抗网络 注意力机制
下载PDF
Generative Adversarial Networks:Introduction and Outlook 被引量:48
11
作者 Kunfeng Wang Chao Gou +3 位作者 Yanjie Duan Yilun Lin Xinhu Zheng Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期588-598,共11页
Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adver... Recently, generative adversarial networks(GANs)have become a research focus of artificial intelligence. Inspired by two-player zero-sum game, GANs comprise a generator and a discriminator, both trained under the adversarial learning idea.The goal of GANs is to estimate the potential distribution of real data samples and generate new samples from that distribution.Since their initiation, GANs have been widely studied due to their enormous prospect for applications, including image and vision computing, speech and language processing, etc. In this review paper, we summarize the state of the art of GANs and look into the future. Firstly, we survey GANs' proposal background,theoretic and implementation models, and application fields.Then, we discuss GANs' advantages and disadvantages, and their development trends. In particular, we investigate the relation between GANs and parallel intelligence,with the conclusion that GANs have a great potential in parallel systems research in terms of virtual-real interaction and integration. Clearly, GANs can provide substantial algorithmic support for parallel intelligence. 展开更多
关键词 ACP approach adversarial learning generative adversarial networks(gans) generative models parallel intelligence zero-sum game
下载PDF
基于改进MMD-GAN的可再生能源随机场景生成
12
作者 吴艳梅 陈红坤 +3 位作者 陈磊 褚昱麟 高鹏 吴海涛 《电力系统保护与控制》 EI CSCD 北大核心 2024年第19期85-96,共12页
针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,... 针对可再生能源出力不确定性的准确表征问题,提出了一种基于改进的最大均值差异生成对抗网络(maximum mean discrepancy generative adversarial networks,MMD-GAN)的可再生能源随机场景生成方法。首先,阐述了GAN及MMD-GAN的基本原理,提出了MMD-GAN的改进方案,即在MMD-GAN的基础上改进鉴别器损失函数,并采用谱归一化和有界高斯核提升生成器和鉴别器的训练稳定性。然后,设计了基于改进MMD-GAN的可再生能源随机场景生成流程。最后,分析了所提方法在可再生能源随机场景生成中的效果,比较了改进MMD-GAN方法与MMD-GAN方法及典型GAN方法的性能差异。结果表明,改进MMD-GAN方法在生成分布和真实分布的Wasserstein距离上较对比方法降低超过50%,生成的场景精度得到有效提升。 展开更多
关键词 场景生成 最大均值差异 生成对抗网络 可再生能源 数据驱动
下载PDF
Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks 被引量:10
13
作者 Husam A.H.Al-Najjar Biswajeet Pradhan 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期625-637,共13页
In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory... In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models. 展开更多
关键词 Landslide susceptibility INVENTORY Machine learning generative adversarial network Convolutional neural network Geographic information system
下载PDF
融合门控变换机制和GAN的低光照图像增强方法
14
作者 何银银 胡静 +1 位作者 陈志泊 张荣国 《计算机工程》 CAS CSCD 北大核心 2024年第2期247-255,共9页
针对低光照图像增强过程中存在的配对图像数据依赖、细节损失严重和噪声放大问题,提出结合门控通道变换机制和生成对抗网络(GAN)的低光照图像增强方法AGR-GAN,该方法可以在没有低/正常光图像对的情况下进行训练。首先,设计特征提取网络... 针对低光照图像增强过程中存在的配对图像数据依赖、细节损失严重和噪声放大问题,提出结合门控通道变换机制和生成对抗网络(GAN)的低光照图像增强方法AGR-GAN,该方法可以在没有低/正常光图像对的情况下进行训练。首先,设计特征提取网络,该网络由多个基于门控通道变换单元的多尺度卷积残差模块构成,以提取输入图像的全局上下文特征和多尺度局部特征信息;然后,在特征融合网络中,采用卷积残差结构将提取的深浅层特征进行充分融合,再引入横向跳跃连接结构,最大程度保留细节特征信息,获得最终的增强图像;最后,引入联合损失函数指导网络训练过程,抑制图像噪声,使增强图像色彩更自然匀称。实验结果表明,该方法在主观视觉分析和客观指标评价方面相较其他算法均具有显著优势,其能有效提高低光照图像的亮度和对比度,减弱图像噪声,增强后的图像更清晰且色彩更真实,峰值信噪比、结构相似度和无参考图像质量评价指标平均可达16.48 dB、0.93和3.37。 展开更多
关键词 低光照图像增强 卷积残差结构 门控通道变换单元 无监督学习 生成对抗网络
下载PDF
Generative Adversarial Network Based Heuristics for Sampling-Based Path Planning 被引量:9
15
作者 Tianyi Zhang Jiankun Wang Max Q.-H.Meng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期64-74,共11页
Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the conf... Sampling-based path planning is a popular methodology for robot path planning.With a uniform sampling strategy to explore the state space,a feasible path can be found without the complex geometric modeling of the configuration space.However,the quality of the initial solution is not guaranteed,and the convergence speed to the optimal solution is slow.In this paper,we present a novel image-based path planning algorithm to overcome these limitations.Specifically,a generative adversarial network(GAN)is designed to take the environment map(denoted as RGB image)as the input without other preprocessing works.The output is also an RGB image where the promising region(where a feasible path probably exists)is segmented.This promising region is utilized as a heuristic to achieve non-uniform sampling for the path planner.We conduct a number of simulation experiments to validate the effectiveness of the proposed method,and the results demonstrate that our method performs much better in terms of the quality of the initial solution and the convergence speed to the optimal solution.Furthermore,apart from the environments similar to the training set,our method also works well on the environments which are very different from the training set. 展开更多
关键词 generative adversarial network(gan) optimal path planning robot path planning sampling-based path planning
下载PDF
基于有效注意力和GAN结合的脑卒中EEG增强算法
16
作者 王夙喆 张雪英 +2 位作者 陈晓玉 李凤莲 吴泽林 《计算机工程》 CAS CSCD 北大核心 2024年第8期336-344,共9页
在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引... 在基于脑电的卒中分类诊断任务中,以卷积神经网络为基础的深度模型得到广泛应用,但由于卒中类别病患样本数量少,导致数据集类别不平衡,降低了分类精度。现有的少数类数据增强方法大多采用生成对抗网络(GAN),生成效果一般,虽然可通过引入缩放点乘注意力改善样本生成质量,但存储及运算代价往往较大。针对此问题,构建一种基于线性有效注意力的渐进式数据增强算法LESA-CGAN。首先,算法采用双层自编码条件生成对抗网络架构,分别进行脑电标签特征提取及脑电样本生成,并使生成过程逐层精细化;其次,通过在编码部分引入线性有效自注意力(LESA)模块,加强脑电的标签隐层特征提取,并降低网络整体的运算复杂度。消融与对比实验结果表明,在合理的编码层数与生成数据比例下,LESA-CGAN与其他基准方法相比计算资源占用较少,且在样本生成质量指标上实现了10%的性能提升,各频段生成的脑电特征样本均更加自然,同时将病患分类的准确率和敏感度提高到了98.85%和98.79%。 展开更多
关键词 脑卒中 脑电 生成对抗网络 自注意力机制 线性有效自注意力
下载PDF
基于CNN与GAN深度学习模型近壁面湍流场超分辨率重构的精细化研究
17
作者 吴昊恺 陈耀然 +2 位作者 周岱 陈文礼 曹勇 《力学学报》 EI CAS CSCD 北大核心 2024年第8期2231-2242,共12页
由城市抗风减灾的目标出发,城市边界层的高保真再现是工程界亟待解决的关键问题.基于高精度的近地风场,有望实现真实环境下城市建筑风致效应的准确预测.传统的基于气象模型的城市风场模拟方法存在预测耗时长、成本昂贵、求解尺度过高等... 由城市抗风减灾的目标出发,城市边界层的高保真再现是工程界亟待解决的关键问题.基于高精度的近地风场,有望实现真实环境下城市建筑风致效应的准确预测.传统的基于气象模型的城市风场模拟方法存在预测耗时长、成本昂贵、求解尺度过高等缺陷.为更准确、高效地预测边界层的空间变化,研究利用超精度卷积神经网络(SRCNN)与生成对抗神经网络(SRGAN),在空间上将低精度的近壁面湍流场超精度重构成高精度的风场.利用近壁面湍流直接数值模拟的公共数据库训练模型并评价模型的重构性能.为寻求合适的超精度模型生成方式,研究围绕训练样本量及网络深度,开展详细的敏感性分析,确定合适的训练网络及其较优的训练参数设置.同时,基于经不同下采样因子处理的低精度流场输入,分析模型在近壁面湍流重构中的适用范围.研究发现,对比于SRCNN模型,SRGAN模型对近壁面湍流内小尺度结构的重现效果更佳.当基于4层卷积残差块、300样本量开展训练时,所生成的SRGAN模型可在较低的训练代价下实现较优的重构效果.当进行10倍超精度重构时,SRGAN模型可保证较理想的预测精度.研究成果为边界层风场的准确重构提供技术支撑,为城区建筑物风致效应的高效预测提供精确的入流条件. 展开更多
关键词 深度学习 超精度生成对抗神经网络 超精度卷积神经网络 超精度重构 城市边界层风场
下载PDF
基于Transformer-GAN的农产品包装版式布局智能设计方法
18
作者 王家宁 朱磊 +3 位作者 张媛 张澜 韩芮 杜艳平 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期195-202,共8页
本研究提出一种基于Transformer-GAN的农产品包装版式布局智能设计方法,旨在解决现阶段的农产品包装主要依赖通版包装、缺乏产品特色等问题。首先,设计了内容感知模块,学习包装设计的内容特征;其次,提出一种设计序列模块,对包装布局信... 本研究提出一种基于Transformer-GAN的农产品包装版式布局智能设计方法,旨在解决现阶段的农产品包装主要依赖通版包装、缺乏产品特色等问题。首先,设计了内容感知模块,学习包装设计的内容特征;其次,提出一种设计序列模块,对包装布局信息进行序列化处理;最后,融合内容感知和布局信息,使模型学习图像的内容特征和布局特征,输出包装版式布局设计图。与先前的模型相比,本研究模型具有更好的设计性能和可解释性,同时创新性地将布局智能设计方法应用于包装设计领域。实验结果表明,设计序列模块提升了设计的有效性,序列化的布局特征相较于非序列化的特征更能生成优质的布局。该模型具有较强的可解释性,在农产品包装版式设计上具有良好的生成性能。 展开更多
关键词 农产品包装 智能设计:设计序列 TRANSFORMER 生成对抗网络
下载PDF
面向舰船目标检测的SAR图像数据PCGAN生成方法
19
作者 潘磊 郭宇诗 +3 位作者 李恒超 王伟业 李泽琛 马天宇 《西南交通大学学报》 EI CSCD 北大核心 2024年第3期547-555,共9页
针对现有合成孔径雷达(SAR)图像数据生成方法大多无法同时生成舰船图像及其检测标签的问题,面向SAR舰船图像生成及目标检测任务,构建基于位置信息的条件生成对抗网络(PCGAN).首先,提出将舰船位置信息作为约束条件用于限制生成图像中舰... 针对现有合成孔径雷达(SAR)图像数据生成方法大多无法同时生成舰船图像及其检测标签的问题,面向SAR舰船图像生成及目标检测任务,构建基于位置信息的条件生成对抗网络(PCGAN).首先,提出将舰船位置信息作为约束条件用于限制生成图像中舰船的位置,并将其作为舰船图像的检测标签;随后,引入Wasserstein距离稳定PCGAN的训练过程;最后,利用生成的SAR舰船图像及对应检测标签完成YOLOv3网络的端到端训练,实现舰船数据增强与目标检测的协同学习,进而获得更耦合目标检测实际应用的多样性数据.在HRSID(high resolution SAR image dataset)数据集上的实验结果表明,PCGAN方法能生成清晰、鲁棒的SAR舰船数据,舰船检测准确度最高提升1.01%,验证了所提出方法的有效性. 展开更多
关键词 合成孔径雷达 生成对抗网络 数据增强 舰船检测 位置信息
下载PDF
基于GAN-DCNN的树叶识别
20
作者 徐竞怡 张志 +1 位作者 闫飞 张雯悦 《林业科学》 EI CAS CSCD 北大核心 2024年第4期40-51,共12页
【目的】利用深度学习进行树叶识别时需要大量训练样本,当样本量不足、图像风格单一会导致识别准确率不稳定。研究利用少量的样本进行树叶图像增殖和风格转换,可极大减轻数据采集的负担,为提升林业调查信息化、智能化提供有效的技术手... 【目的】利用深度学习进行树叶识别时需要大量训练样本,当样本量不足、图像风格单一会导致识别准确率不稳定。研究利用少量的样本进行树叶图像增殖和风格转换,可极大减轻数据采集的负担,为提升林业调查信息化、智能化提供有效的技术手段和理论支撑。【方法】采集6种树种的树叶图像建立数据集,引入light-weight GAN对图像进行增殖和风格转换,扩充人工拍摄的树叶数据集,通过在该数据集与原数据集上分别应用AlexNet、GoogLeNet、ResNet34和ShuffleNetV2四种深度卷积神经网络进行训练,分析生成对抗网络的图像增殖技术在树叶识别中的作用。综合模型准确率和训练时间等性能指标选择最优模型,同时对模型的学习率进行调整。使用测试样本对参数优化后的模型进行验证,分析该方法在实践中的可行性和意义。【结果】基于生成对抗网络生成的样本具有高清晰度,高保真性,能够有效地辅助神经网络模型的训练工作,同时也丰富了样本类别,使之获得包含更多不同季节、形状、健康状况的树叶图像。与原始数据集相比,AlexNet、GoogLeNet、ResNet34和ShuffleNetV2四种网络在新数据集的训练上均表现出训练误差更小、验证精度更高的特点,其中学习率为0.01的ShuffleNetV2模型对该数据集的训练效果最好,训练时最高验证精度为99.7%。使用未参与训练的测试样本对该模型进行验证,模型对各树叶的识别效果较好,模型的总体识别准确率高达99.8%。与未使用GAN技术的普通深度卷积神经网络相比,本文提出的模型对树叶识别准确率明显提升。【结论】生成对抗网络可以有效地扩充图像数量,对图像进行风格转换,与深度卷积神经网络相结合,可以显著提高树叶识别准确率,适合应用于林业树叶识别领域。 展开更多
关键词 树叶识别 生成对抗网络 深度卷积神经网络
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部