Objective:To investigate the mRNA expression of PTEN and vascular endothelial growth factor (VEGF) genes in ovarian cancer. Methods:We examined mRNA expression of PTEN and VEGF165 in normal ovary (n=5), ovarian cyst (...Objective:To investigate the mRNA expression of PTEN and vascular endothelial growth factor (VEGF) genes in ovarian cancer. Methods:We examined mRNA expression of PTEN and VEGF165 in normal ovary (n=5), ovarian cyst (n=5), ovarian borderline tumor (n=9), epithelial ovarian cancer (n=60) and ovarian cancer cell line (CAOV-3) by RT-PCR. Their expressions were compared with clinicopathological features of ovarian cancer. The relationship between their expressions was concerned in all ovarian samples as well. Results:mRNA expression level of PTEN gene was significantly lower in ovarian borderline tumor or ovarian cancer than that in normal ovary or ovarian cyst(P<0.05). It was negatively correlated with clinicopathological staging(P<0.05),whereas positively with histological differentiation (P<0.05). mRNA expression level of PTEN gene was significantly lower in ovarian endometrioid cancer than ovarian serous or mucinous cancer(P<0.05). mRNA expression level of VEGF165 gene was significantly higher in ovarian cancer than that in normal ovary or ovarian cyst(P<0.05). It was positively correlated with clinicopathological staging(P<0.05), whereas negatively with histological differentiation (P<0.05). mRNA expression level of VEGF165 gene was significantly higher in ovarian serous cancer than in other ovarian epithelial cancers (P<0.05). mRNA expression of VEGF165 gene was inversely correlated with mRNA expression level of PTEN gene. Conclusion:Down-regulated expression of PTEN and up-regulated expression of VEGF were considered as two important events in tumorigenesis of ovarian cancer and could be used as molecular markers to indicate the pathobiological behaviors of ovarian cancer. Decreased PTEN expression and increased VEGF expression were closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid and serous cancer respectively. Reduced expression of PTEN gene might be involved in carcinogenesis and progression of ovarian cancer by up-regulating the VEGF expression to enhance angiogenesis.展开更多
BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the preval...BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.展开更多
Objective To investigate the mutation and expression of tumor suppressor gene-PTEN mRNA and explore their roles in tumorigenesis and progression of ovarian cancer. Methods Mutated exon 5 of PTEN gene was examined in n...Objective To investigate the mutation and expression of tumor suppressor gene-PTEN mRNA and explore their roles in tumorigenesis and progression of ovarian cancer. Methods Mutated exon 5 of PTEN gene was examined in normal ovary(n = 5), ovarian cyst (n =5), ovarian borderline tumor (n = 9), epithelial ovarian cancer(n = 60), and ovarian cancer cell line (n = 1)by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). mRNA expression of PTEN gene was evaluated in corresponding tissues and cell line by reverse transcription polymerase chain reaction(RT-PCR). The mutation and mRNA expression of PTEN gene were compared with clini-copathological features of ovarian cancer. Results Mutated exon 5 of PTEN gene was detected only in 5(7.1%)cases of epithelial ovarian cancer. mRNA expression level of PTEN gene in ovarian borderline tumor or ovarian cancer was lower than that in normal ovary or ovarian cyst(P < 0.05). The level of PTEN gene mRNA expression was negatively correlated with clinicopathological staging of ovarian cancer, whereas positively correlated with histological differentiation (P < 0.05). mRNA expression level of PTEN gene in ovarian endometrioid cancer was significantly lower than that in ovarian serous or mucinous cancer (P < 0.05=. Conclusions Mutation of PTEN gene occurs in ovarian cancer. Down-regulated expression of PTEN is probably an important molecular event in tumorigenesis of ovarian cancer. Abnormal expression of PTEN gene is involved in progression of ovarian cancer. Reduced expression of PTEN gene is closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid cancer.展开更多
AIM: To investigate the expression of PTEN/MMAC1/TEP1 and vascular endothelial growth factor (VEGF), their roles in biologic behavior and angiogenesis and their association in gastric cancer.METHODS: Immunohistochemic...AIM: To investigate the expression of PTEN/MMAC1/TEP1 and vascular endothelial growth factor (VEGF), their roles in biologic behavior and angiogenesis and their association in gastric cancer.METHODS: Immunohistochemical staining was used to evaluate the expression of PTEN, VEGF and microvascular density (MVD) on paraffin-embedded sections in 70 patients with primary gastric cancer and 24 patients with chronic superficial gastritis (CSG). Expression of PTEN, VEGF and MVD were compared with clinicopathological features of gastric cancer. The relationship between expression of PTEN, VEGF and MVD as well as the relationship between PTEN and VEGF expression in caner cells were investigated. RESULTS: PTEN expression significantly decreased (t= 3.98, P<0.01) whereas both VEGF expression and MVD significant increased (t = 4.29 and 4.41, respectively, both P<0.01) in gastric cancer group compared with CSG group. PTEN expression was significantly down-regulated (t=1.95, P<0.05) whereas VEGF expression (t = 2.37, P<0.05) and MVD (t= 3.28, P<0.01) was significantly up-regulated in advanced gastric cancer compared with early-stage gastric cancer. PTEN expression in gastric cancer showed a negative association with lymph node metastasis (t= 3.91, P<0.01), invasion depth (t= 1.95, P<0.05) and age (t= 4.69, P<0.01). MVD in PTEN-negative gastric cancer was significantly higher than that in PTEN-positive gastric cancer (t=3.69, P<0.01), and there was a negative correlation betweenPTEN expression and MVD (γ=-0.363, P<0.05). VEGF expression was positively associated with invasion depth (especially with serosa invasion, t = 4.69, P<0.01), lymph node metastasis (t= 2.31, P<0.05) and TNM stage (t= 3.04, P<0.01). MVD in VEGF-positive gaslyic cancer was significantly higher than that in VEGF-negative gastric cancer (t=4.62, P<0.01), and there was a positive correlation between VEGF expression of and MVD (y = 0.512, P<0.05). VEGF expression in PTEN-negative gaslyic cancer was significantly stronger than that in PTEN-positive gastric cancer (t=2.61, P<0.05), and there was a significantly negative correlation between the expression of VEGF and PTEN (γ=-0.403, P<0.05).CONCLUSION: Our results imply that inactivation of PTEN gene and over-expression of VEGF contribute to the neovascularization and progression of gastric cancer. PTEN-related angiogenesis might be attributed to its up-regulation of VEGF expression. PTEN and VEGF could be used as the markers reflecting the biologic behaviors of tumor and viable targets in therapeutic approaches to inhibit angiogenesis of gastric cancers.展开更多
AIM: To investigate expression of PTEN in gastric cancer and to explore its roles in tumorigenesis and progression of gastric cancer.METHODS: Formalin-fixed and paraffin-embedded tissues of adjacent non-tumor mucosa a...AIM: To investigate expression of PTEN in gastric cancer and to explore its roles in tumorigenesis and progression of gastric cancer.METHODS: Formalin-fixed and paraffin-embedded tissues of adjacent non-tumor mucosa and primary foci from 113cases of gastric cancers were studied for the expression of PTEN and Caspase-3 andmicrovessel density (MVD)by streptavidin-peroxidase (S-P) immunohistochemistry with antibodies against PTEN, Caspase-3, and CD34. The relationship between PTEN and Caspase 3 expression and clinicopathological parameters of tumors was compared.RESULTS: Primary gastric cancer cells expressed PTEN less frequently than adjacent epithelial cells of primary foci (54.9% vs89.4%; P=0.000, χ2=33.474). PTEN expression was significantly associated with invasive depth (P=0.003,rs=0.274), metastasis (P=0.036, rs=0.197), growth pattern (P=0.008, rs=0.282), Lauren′s classification (P=0.000,rs=0.345), and histological classification (P=0.005, rs=0.262)of tumors, but not with tumor size (P=0.639, rs=0.045),Borrmann′s classification (P=0.544, rs=0.070) or TNM staging (P=0.172, rs=0.129). PTEN expression was negatively correlated with MDV in primary gastric cancer (P=0.020,F=5.558). Primary gastric cancer cells showed less frequent immunoreactivity to Caspase-3 than adjacent epithelial cells of primary foci (32.7 % vs 50.4 %; P=0.007,χ2=7.286).Caspase-3 expression was dependent of PTEN expression in primary gastric cancer cells (P=0.000, χ2=15.266).CONCLUSION: Down-regulated expression of PTEN plays an important role in tumorigenesis, progression, growth,differentiation and angiogenesis of gastric cancer. Low expression of PTEN can decrease expression of Caspase-3to disorder apoptosis of tumor cells, which might explain the molecular mechanisms of PTEN contributions to tumorigenesis and progression of gastric cancer.展开更多
Objective: To reveal the effect of Jianpi Jiedu recipe (JPJDR) on angiogenesis and the PTEN (Phosphatase and tensinhomolog deleted on chromosome ten)/PI3K/AKT signaling pathway in the course of H. pylori infectio...Objective: To reveal the effect of Jianpi Jiedu recipe (JPJDR) on angiogenesis and the PTEN (Phosphatase and tensinhomolog deleted on chromosome ten)/PI3K/AKT signaling pathway in the course of H. pylori infection-inducedcarcinogenesis of gastric mucosa in C57BL/6 mice. Methods: Two-hundred C57BL/6 mice were randomly divided intofive groups (control group, model group, JPJDR low-dose group, JPJDR medium-dose group, and JPJDR high-dosegroup), 40 in each group. A mouse model of gastric cancer, induced by H. pylori standard strain infection, wasestablished. The mice of JPJDR low-dose, middle-dose, and high-dose groups were intragastrically administered 250,500, and 1000 mg/kg JPJDR per day, respectively. After 72 weeks, the H. pylori infection in gastric mucosa of the micewas analyzed by rapid urease test; the pathological changes in the gastric mucosa of mice were assessed byhistopathological examination, and micro-vessel density (MVD), vascular endothelial growth factor (VEGF), andPTEN/PI3K/AKT levels were determined. Results: The incidence of gastric cancer in each group (control group, modelgroup, JPJDR low-dose, medium-dose, high-dose group) was 0%, 26.3%, 13.2%, 10%, and 7.5% respectively. Theincidence of gastric cancer in the Chinese medicine group was significantly lower than that of the model group (P =0.020, P = 0.023, P = 0.007). The expression of MVD and VEGF in the model group was significantly higher than thatin the control group (P = 0.002, P 〈 0.001), while the expression of MVD and VEGF decreased in the Chinese medicinegroup. The expression of p-PTEN and p-AKT in the model group was significantly higher than that in the control group(All P 〈 0.001), while Chinese medicine could reduce the expression of p-PTEN and p-AKT to varying extents.Conclusion: Long-term infection of C57BL/6 mice with H. pylori induces gastric carcinogenesis, by increasing gastricmucosal MVD, promoting the expression of VEGF, inhibiting the activity of PTEN, and activating the PI3K/AKTsignaling pathway. JPJDR can reduce the infection rate of H. pylori in mouse gastric mucosa, inhibit the expression ofMVD and VEGF, and reduce the inactivation of PTEN.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE1024...AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.展开更多
Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of nov...Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.展开更多
Breast and ovarian cancers exhibit several similar epidemiologic, genotypic and phenotypic characteristics suggesting that similar underlying genetic defects may contribute to the development of both tumor types. Phos...Breast and ovarian cancers exhibit several similar epidemiologic, genotypic and phenotypic characteristics suggesting that similar underlying genetic defects may contribute to the development of both tumor types. Phosphatidylinositol 3 kinase (PI3K) and the PTEN tumor suppressor gene product phosphorylate and dephosphorylate the same 3' site in the inositol ring of membrane phosphatidylinositols. Germline mutations in the PTEN tumor suppressor gene are causative of the Cowden's breast cancer predisposition syndrome and PTEN is frequently mutated or expressed at decreased levels in sporadic breast cancers. PTEN is also frequently mutated in gliomas, prostate cancer, endometrioid ovarian cancer and展开更多
Hepatic stellate cell (HSC) activation is an essential event during liver fibrogene- sis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this proces...Hepatic stellate cell (HSC) activation is an essential event during liver fibrogene- sis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic si- lencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSCs activation and liver fibrosis, we observed that hypermethyla- tion of PTEN gene was responsible for the decrease of PTEN expression during HSCs展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (...Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.展开更多
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using...The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.展开更多
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co...Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.展开更多
Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role re...Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role remains unclear. These can provide an ideal setting for the acquisition and dissemination of antibiotic resistance, as they are frequently affected by anthropogenic activities. The objective of this study was to establish a diffusion map of resistance integrons used as genetic markers of resistance associated with antibiotic resistance conferring genes (ARGs). Total DNA extracts from non-cultivable bacterial communities were used for the analyses. These communities were obtained from wastewater samples from 14 sites upstream and downstream of drainage channels or effluents in the cities of Abidjan, Bouaké, and Yamoussoukro. The results obtained correspond to the number of positives among the treated samples (n = 39). Among the genetic markers of dissemination, class 1 integrons were the most evident in 94.8% of samples in Abidjan (93.3%), Bouaké (100%) and Yamoussoukro (91.6%). Class 2 integrons and class 3 integrons were found respectively in 41% and 51% of all samples. Genes coding for β-lactamases and blaTEM was identified in almost all samples at a rate of 97.4%. A co-presence of the three genes blaTEM, blaSHV and blaCTX-M is also remarkable in the sites of the city of Yamoussoukro. Among the genes coding for carbapenemases, only blaKPC 17.94%, blaNDM 30.76% and blaOXA48 38.46% were detected in the samples.展开更多
Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the ma...Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.展开更多
BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic e...BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic evaluation.AIM To determine PBC-associated hub genes and assess their clinical utility for disease prediction.METHODS PBC expression data were obtained from the Gene Expression Omnibus database.Overlapping genes from differential expression analysis and weighted gene coexpression network analysis(WGCNA)were identified as key genes for PBC.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed to explore the potential roles of key genes.Hub genes were identified in protein-protein interaction(PPI)networks using the Degree algorithm in Cytoscape software.The relationship between hub genes and immune cells was investigated.Finally,a Mendelian randomization study was conducted to determine the causal effects of hub genes on PBC.RESULTS We identified 71 overlapping key genes using differential expression analysis and WGCNA.These genes were primarily enriched in pathways related to cytokinecytokine receptor interaction,and Th1,Th2,and Th17 cell differentiation.We utilized Cytoscape software and identified five hub genes(CD247,IL10,CCL5,CCL3,and STAT3)in PPI networks.These hub genes showed a strong correlation with immune cell infiltration in PBC.However,inverse variance weighting analysis did not indicate the causal effects of hub genes on PBC risk.CONCLUSION Hub genes can potentially serve as valuable biomarkers for PBC prediction and treatment,thereby offering significant clinical utility.展开更多
Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previo...Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previous studies have been devoted to the in vitro propagation of Hippeastrum, but the SE and its regulatory networks are rarely reported. In this study, we established a direct SE method of Hippeastrum Bangkok Rose' using leaf bases as explants. MS supplemented with 1.00 mg·L^(-1)NAA +1.00 mg·L^(-1)KT + 0.25 mg·L^(-1)TDZ was the optimal medium for SE. Histological observations showed that the bipolar somatic embryo originated from the epidermal cell layer and underwent initiation,globular, scutellar and coleoptile stages. During SE, endogenous hormones of IAA, CTK, ABA, and SA were highly accumulated. Transcriptomic analysis revealed the genes encoding auxin biosynthesis/metabolic enzymes and efflux carriers were induced, while the auxin receptor of TIR1 and ARF transcriptional repressor of Aux/IAA were down-regulated and up-regulated, respectively, leading to suppression of auxin signaling. In contrast, cytokine signaling was promoted at the early stage of SE, as biosynthesis, transport, and signaling components were up-regulated.Various stress-related genes were up-regulated at the early or late stages of SE. Chromatin remodeling could also be dynamically regulated via distinct expression enzymes that control histone methylation and acetylation during SE. Moreover, key SE regulators, including WOXs and SERKs were highly expressed along with SE. Overall, the present study provides insights into the SE regulatory mechanisms of the Hippeastrum.展开更多
Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiom...Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.展开更多
基金This work was supported by a grant from the National Natural Science Foundation of China (No. 39370772)
文摘Objective:To investigate the mRNA expression of PTEN and vascular endothelial growth factor (VEGF) genes in ovarian cancer. Methods:We examined mRNA expression of PTEN and VEGF165 in normal ovary (n=5), ovarian cyst (n=5), ovarian borderline tumor (n=9), epithelial ovarian cancer (n=60) and ovarian cancer cell line (CAOV-3) by RT-PCR. Their expressions were compared with clinicopathological features of ovarian cancer. The relationship between their expressions was concerned in all ovarian samples as well. Results:mRNA expression level of PTEN gene was significantly lower in ovarian borderline tumor or ovarian cancer than that in normal ovary or ovarian cyst(P<0.05). It was negatively correlated with clinicopathological staging(P<0.05),whereas positively with histological differentiation (P<0.05). mRNA expression level of PTEN gene was significantly lower in ovarian endometrioid cancer than ovarian serous or mucinous cancer(P<0.05). mRNA expression level of VEGF165 gene was significantly higher in ovarian cancer than that in normal ovary or ovarian cyst(P<0.05). It was positively correlated with clinicopathological staging(P<0.05), whereas negatively with histological differentiation (P<0.05). mRNA expression level of VEGF165 gene was significantly higher in ovarian serous cancer than in other ovarian epithelial cancers (P<0.05). mRNA expression of VEGF165 gene was inversely correlated with mRNA expression level of PTEN gene. Conclusion:Down-regulated expression of PTEN and up-regulated expression of VEGF were considered as two important events in tumorigenesis of ovarian cancer and could be used as molecular markers to indicate the pathobiological behaviors of ovarian cancer. Decreased PTEN expression and increased VEGF expression were closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid and serous cancer respectively. Reduced expression of PTEN gene might be involved in carcinogenesis and progression of ovarian cancer by up-regulating the VEGF expression to enhance angiogenesis.
文摘BACKGROUND A growing number of clinical examples suggest that coronavirus disease 2019(COVID-19)appears to have an impact on the treatment of patients with liver cancer compared to the normal population,and the prevalence of COVID-19 is significantly higher in patients with liver cancer.However,this mechanism of action has not been clarified.Gene sets for COVID-19(GSE180226)and liver cancer(GSE87630)were obtained from the Gene Expression Omnibus database.After identifying the common differentially expressed genes(DEGs)of COVID-19 and liver cancer,functional enrichment analysis,protein-protein interaction network construction and scree-ning and analysis of hub genes were performed.Subsequently,the validation of the differential expression of hub genes in the disease was performed and the regulatory network of transcription factors and hub genes was constructed.RESULTS Of 518 common DEGs were obtained by screening for functional analysis.Fifteen hub genes including aurora kinase B,cyclin B2,cell division cycle 20,cell division cycle associated 8,nucleolar and spindle associated protein 1,etc.,were further identified from DEGs using the“cytoHubba”plugin.Functional enrichment analysis of hub genes showed that these hub genes are associated with P53 signalling pathway regulation,cell cycle and other functions,and they may serve as potential molecular markers for COVID-19 and liver cancer.Finally,we selected 10 of the hub genes for in vitro expression validation in liver cancer cells.CONCLUSION Our study reveals a common pathogenesis of liver cancer and COVID-19.These common pathways and key genes may provide new ideas for further mechanistic studies.
文摘Objective To investigate the mutation and expression of tumor suppressor gene-PTEN mRNA and explore their roles in tumorigenesis and progression of ovarian cancer. Methods Mutated exon 5 of PTEN gene was examined in normal ovary(n = 5), ovarian cyst (n =5), ovarian borderline tumor (n = 9), epithelial ovarian cancer(n = 60), and ovarian cancer cell line (n = 1)by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). mRNA expression of PTEN gene was evaluated in corresponding tissues and cell line by reverse transcription polymerase chain reaction(RT-PCR). The mutation and mRNA expression of PTEN gene were compared with clini-copathological features of ovarian cancer. Results Mutated exon 5 of PTEN gene was detected only in 5(7.1%)cases of epithelial ovarian cancer. mRNA expression level of PTEN gene in ovarian borderline tumor or ovarian cancer was lower than that in normal ovary or ovarian cyst(P < 0.05). The level of PTEN gene mRNA expression was negatively correlated with clinicopathological staging of ovarian cancer, whereas positively correlated with histological differentiation (P < 0.05). mRNA expression level of PTEN gene in ovarian endometrioid cancer was significantly lower than that in ovarian serous or mucinous cancer (P < 0.05=. Conclusions Mutation of PTEN gene occurs in ovarian cancer. Down-regulated expression of PTEN is probably an important molecular event in tumorigenesis of ovarian cancer. Abnormal expression of PTEN gene is involved in progression of ovarian cancer. Reduced expression of PTEN gene is closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid cancer.
文摘AIM: To investigate the expression of PTEN/MMAC1/TEP1 and vascular endothelial growth factor (VEGF), their roles in biologic behavior and angiogenesis and their association in gastric cancer.METHODS: Immunohistochemical staining was used to evaluate the expression of PTEN, VEGF and microvascular density (MVD) on paraffin-embedded sections in 70 patients with primary gastric cancer and 24 patients with chronic superficial gastritis (CSG). Expression of PTEN, VEGF and MVD were compared with clinicopathological features of gastric cancer. The relationship between expression of PTEN, VEGF and MVD as well as the relationship between PTEN and VEGF expression in caner cells were investigated. RESULTS: PTEN expression significantly decreased (t= 3.98, P<0.01) whereas both VEGF expression and MVD significant increased (t = 4.29 and 4.41, respectively, both P<0.01) in gastric cancer group compared with CSG group. PTEN expression was significantly down-regulated (t=1.95, P<0.05) whereas VEGF expression (t = 2.37, P<0.05) and MVD (t= 3.28, P<0.01) was significantly up-regulated in advanced gastric cancer compared with early-stage gastric cancer. PTEN expression in gastric cancer showed a negative association with lymph node metastasis (t= 3.91, P<0.01), invasion depth (t= 1.95, P<0.05) and age (t= 4.69, P<0.01). MVD in PTEN-negative gastric cancer was significantly higher than that in PTEN-positive gastric cancer (t=3.69, P<0.01), and there was a negative correlation betweenPTEN expression and MVD (γ=-0.363, P<0.05). VEGF expression was positively associated with invasion depth (especially with serosa invasion, t = 4.69, P<0.01), lymph node metastasis (t= 2.31, P<0.05) and TNM stage (t= 3.04, P<0.01). MVD in VEGF-positive gaslyic cancer was significantly higher than that in VEGF-negative gastric cancer (t=4.62, P<0.01), and there was a positive correlation between VEGF expression of and MVD (y = 0.512, P<0.05). VEGF expression in PTEN-negative gaslyic cancer was significantly stronger than that in PTEN-positive gastric cancer (t=2.61, P<0.05), and there was a significantly negative correlation between the expression of VEGF and PTEN (γ=-0.403, P<0.05).CONCLUSION: Our results imply that inactivation of PTEN gene and over-expression of VEGF contribute to the neovascularization and progression of gastric cancer. PTEN-related angiogenesis might be attributed to its up-regulation of VEGF expression. PTEN and VEGF could be used as the markers reflecting the biologic behaviors of tumor and viable targets in therapeutic approaches to inhibit angiogenesis of gastric cancers.
文摘AIM: To investigate expression of PTEN in gastric cancer and to explore its roles in tumorigenesis and progression of gastric cancer.METHODS: Formalin-fixed and paraffin-embedded tissues of adjacent non-tumor mucosa and primary foci from 113cases of gastric cancers were studied for the expression of PTEN and Caspase-3 andmicrovessel density (MVD)by streptavidin-peroxidase (S-P) immunohistochemistry with antibodies against PTEN, Caspase-3, and CD34. The relationship between PTEN and Caspase 3 expression and clinicopathological parameters of tumors was compared.RESULTS: Primary gastric cancer cells expressed PTEN less frequently than adjacent epithelial cells of primary foci (54.9% vs89.4%; P=0.000, χ2=33.474). PTEN expression was significantly associated with invasive depth (P=0.003,rs=0.274), metastasis (P=0.036, rs=0.197), growth pattern (P=0.008, rs=0.282), Lauren′s classification (P=0.000,rs=0.345), and histological classification (P=0.005, rs=0.262)of tumors, but not with tumor size (P=0.639, rs=0.045),Borrmann′s classification (P=0.544, rs=0.070) or TNM staging (P=0.172, rs=0.129). PTEN expression was negatively correlated with MDV in primary gastric cancer (P=0.020,F=5.558). Primary gastric cancer cells showed less frequent immunoreactivity to Caspase-3 than adjacent epithelial cells of primary foci (32.7 % vs 50.4 %; P=0.007,χ2=7.286).Caspase-3 expression was dependent of PTEN expression in primary gastric cancer cells (P=0.000, χ2=15.266).CONCLUSION: Down-regulated expression of PTEN plays an important role in tumorigenesis, progression, growth,differentiation and angiogenesis of gastric cancer. Low expression of PTEN can decrease expression of Caspase-3to disorder apoptosis of tumor cells, which might explain the molecular mechanisms of PTEN contributions to tumorigenesis and progression of gastric cancer.
基金Funding: This study was supported by National Natural Science Foundation of China (81202663,81273958), the NaturalScience Foundation of Shanghai, China (12ZR1449300), the Shanghai Health and Family Planning Commission(20134309) Program for Outstanding Academic Leader of Shanghai, Program for Outstanding Medical AcademicLeader of Shanghai, the Xinglin Star Plan of Shanghai (ZY3-RCPY-2-2006).
文摘Objective: To reveal the effect of Jianpi Jiedu recipe (JPJDR) on angiogenesis and the PTEN (Phosphatase and tensinhomolog deleted on chromosome ten)/PI3K/AKT signaling pathway in the course of H. pylori infection-inducedcarcinogenesis of gastric mucosa in C57BL/6 mice. Methods: Two-hundred C57BL/6 mice were randomly divided intofive groups (control group, model group, JPJDR low-dose group, JPJDR medium-dose group, and JPJDR high-dosegroup), 40 in each group. A mouse model of gastric cancer, induced by H. pylori standard strain infection, wasestablished. The mice of JPJDR low-dose, middle-dose, and high-dose groups were intragastrically administered 250,500, and 1000 mg/kg JPJDR per day, respectively. After 72 weeks, the H. pylori infection in gastric mucosa of the micewas analyzed by rapid urease test; the pathological changes in the gastric mucosa of mice were assessed byhistopathological examination, and micro-vessel density (MVD), vascular endothelial growth factor (VEGF), andPTEN/PI3K/AKT levels were determined. Results: The incidence of gastric cancer in each group (control group, modelgroup, JPJDR low-dose, medium-dose, high-dose group) was 0%, 26.3%, 13.2%, 10%, and 7.5% respectively. Theincidence of gastric cancer in the Chinese medicine group was significantly lower than that of the model group (P =0.020, P = 0.023, P = 0.007). The expression of MVD and VEGF in the model group was significantly higher than thatin the control group (P = 0.002, P 〈 0.001), while the expression of MVD and VEGF decreased in the Chinese medicinegroup. The expression of p-PTEN and p-AKT in the model group was significantly higher than that in the control group(All P 〈 0.001), while Chinese medicine could reduce the expression of p-PTEN and p-AKT to varying extents.Conclusion: Long-term infection of C57BL/6 mice with H. pylori induces gastric carcinogenesis, by increasing gastricmucosal MVD, promoting the expression of VEGF, inhibiting the activity of PTEN, and activating the PI3K/AKTsignaling pathway. JPJDR can reduce the infection rate of H. pylori in mouse gastric mucosa, inhibit the expression ofMVD and VEGF, and reduce the inactivation of PTEN.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金Supported by Scientific Research Project of Xianning Central Hospital in 2022 (No.2022XYB020)Science and Technology Plan Project of Xianning Municipal in 2022 (No.2022SFYF014).
文摘AIM:To prevent neovascularization in diabetic retinopathy(DR)patients and partially control disease progression.METHODS:Hypoxia-related differentially expressed genes(DEGs)were identified from the GSE60436 and GSE102485 datasets,followed by gene ontology(GO)functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis.Potential candidate drugs were screened using the CMap database.Subsequently,a protein-protein interaction(PPI)network was constructed to identify hypoxia-related hub genes.A nomogram was generated using the rms R package,and the correlation of hub genes was analyzed using the Hmisc R package.The clinical significance of hub genes was validated by comparing their expression levels between disease and normal groups and constructing receiver operating characteristic curve(ROC)curves.Finally,a hypoxia-related miRNA-transcription factor(TF)-Hub gene network was constructed using the NetworkAnalyst online tool.RESULTS:Totally 48 hypoxia-related DEGs and screened 10 potential candidate drugs with interaction relationships to upregulated hypoxia-related genes were identified,such as ruxolitinib,meprylcaine,and deferiprone.In addition,8 hub genes were also identified:glycogen phosphorylase muscle associated(PYGM),glyceraldehyde-3-phosphate dehydrogenase spermatogenic(GAPDHS),enolase 3(ENO3),aldolase fructose-bisphosphate C(ALDOC),phosphoglucomutase 2(PGM2),enolase 2(ENO2),phosphoglycerate mutase 2(PGAM2),and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3(PFKFB3).Based on hub gene predictions,the miRNA-TF-Hub gene network revealed complex interactions between 163 miRNAs,77 TFs,and hub genes.The results of ROC showed that the except for GAPDHS,the area under curve(AUC)values of the other 7 hub genes were greater than 0.758,indicating their favorable diagnostic performance.CONCLUSION:PYGM,GAPDHS,ENO3,ALDOC,PGM2,ENO2,PGAM2,and PFKFB3 are hub genes in DR,and hypoxia-related hub genes exhibited favorable diagnostic performance.
文摘Background: Hypertension, also known as increased blood pressure, is a phenomenon in which blood flows in blood vessels and causes persistently higher-than-normal pressure on the vessel wall. The identification of novel prognostic and pathogenesis biomarkers plays a key role in the management of hypertension. Methods: The GSE7483 and GSE75815 datasets from the gene expression omnibus (GEO) database were used to identify the genes associated with hypertension that were differentially expressed genes (DEGs). The functional role of the DEGs was elucidated by gene body (GO) enrichment analysis. In addition, we performed an immune infiltration assay and GSEA on the DEGs of hypertensive patients and verified the expression of novel DEGs in the blood of hypertensive patients by RT-qPCR. Results: A total of 267 DEGs were identified from the GEO database. GO analysis revealed that these genes were associated mainly with biological processes such as fibroblast proliferation, cell structural organization, extracellular matrix organization, vasculature development regulation, and angiogenesis. We identified five possible biomarkers, Ecm1, Sparc, Sphk1, Thbsl, and Mecp2, which correlate with vascular development and angiogenesis characteristic of hypertension by bioinformatics, and explored the clinical expression levels of these genes by RT-qPCR, and found that Sparc, Sphk1, and Thbs1 showed significant up-regulation, in agreement with the results of the bioinformatics analysis. Conclusion: Our study suggested that Sparc, Sphk1 and Thbs1 may be potential novel biomarkers for the diagnosis, treatment and prognosis of hypertension and that they are involved in the regulation of vascular development and angiogenesis in hypertension.
文摘Breast and ovarian cancers exhibit several similar epidemiologic, genotypic and phenotypic characteristics suggesting that similar underlying genetic defects may contribute to the development of both tumor types. Phosphatidylinositol 3 kinase (PI3K) and the PTEN tumor suppressor gene product phosphorylate and dephosphorylate the same 3' site in the inositol ring of membrane phosphatidylinositols. Germline mutations in the PTEN tumor suppressor gene are causative of the Cowden's breast cancer predisposition syndrome and PTEN is frequently mutated or expressed at decreased levels in sporadic breast cancers. PTEN is also frequently mutated in gliomas, prostate cancer, endometrioid ovarian cancer and
文摘Hepatic stellate cell (HSC) activation is an essential event during liver fibrogene- sis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic si- lencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSCs activation and liver fibrosis, we observed that hypermethyla- tion of PTEN gene was responsible for the decrease of PTEN expression during HSCs
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
基金supported by the China Agriculture Research System (Grant No.CARS-28-14)。
文摘Fruitlet calyx shedding in pear plants is apparently regulated via numerous pathways that involve both environmental triggers and phytohormones cues such as auxin. In this study, we found at 10 days after full bloom (DAFB) higher levels of indoleacetic acid (IAA) and tryptophan (Trp) in calyx persistence fruitlet (CPF) than calyx shedding fruitlet (CSF) ofDanshan Suli’ pear (Pyrus bretschneideri Rhed.). Consisting with this, the activity of indolealdehyde oxidase (IAAIdO), which promotes IAA synthesis, was remarkably increased, and that of peroxidase(POD), which degrades IAA, dropped markedly in CPF but not in CSF. Further, qRT-PCR results revealed that most of 31 PbrARFs (encoding auxin response factors) in Pyrus bretschneideri were highly expressed in CPF, whereas PbrARF4, PbrARF24 and PbrARF26 were significantly downregulated in CPF vis-a-vis CSF. Phylogenetic analysis revealed that 6 PbrARFs clustered in the group III, where PbrARF4 showed the closest affinity with AtARF1 that promotes organ abscission, indicating a putative role of PbrARF4 in mediating the process of calyx shedding in pear. In fact, the ectopic overexpression of PbrARF4 in Solanum lycopersicum resulted in an earlier-formed and deeper abscission layer (AL) in the transgenic plants, whose calyxes were more prone to wilt at the mature red stage (MR) compared with the control plants (wild-type). More importantly, expression levels of the abscission genes SILS and Sl Cel2 in transgenic plants overexpressing PbrARF4 were significantly upregulated in comparation with the WT, whereas those of Sl BI and Sl TAPG2 were considerably inhibited. Further, PbrJOINTLESS and PbrIDA,the two genes related to calyx shedding in pear, were up-regulated more in CSF than CPF. The findings contribute to a better understanding of PbrARFs involved in fruitlet calyx shedding of pear, which could prove beneficial to improving the quality of pear fruit.
文摘The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment.
文摘Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.
文摘Antibiotic resistance has become a major threat to human health worldwide. Environment, particularly the water environment, has long been overlooked as a player in the antibiotic resistance cycle, although its role remains unclear. These can provide an ideal setting for the acquisition and dissemination of antibiotic resistance, as they are frequently affected by anthropogenic activities. The objective of this study was to establish a diffusion map of resistance integrons used as genetic markers of resistance associated with antibiotic resistance conferring genes (ARGs). Total DNA extracts from non-cultivable bacterial communities were used for the analyses. These communities were obtained from wastewater samples from 14 sites upstream and downstream of drainage channels or effluents in the cities of Abidjan, Bouaké, and Yamoussoukro. The results obtained correspond to the number of positives among the treated samples (n = 39). Among the genetic markers of dissemination, class 1 integrons were the most evident in 94.8% of samples in Abidjan (93.3%), Bouaké (100%) and Yamoussoukro (91.6%). Class 2 integrons and class 3 integrons were found respectively in 41% and 51% of all samples. Genes coding for β-lactamases and blaTEM was identified in almost all samples at a rate of 97.4%. A co-presence of the three genes blaTEM, blaSHV and blaCTX-M is also remarkable in the sites of the city of Yamoussoukro. Among the genes coding for carbapenemases, only blaKPC 17.94%, blaNDM 30.76% and blaOXA48 38.46% were detected in the samples.
基金supported by the National Key Research and Development Program of China(2023YFD1200600 to Xiaoya Lin)National Natural Science Foundation of China(32090060 to Fanjiang Kong,32001568 to Xiaoya Lin,31930083 to Baohui Liu,and 31901500 to Tiantian Bu)China Postdoctoral Science Foundation(2019 M652839 to Liyu Chen)。
文摘Soybean(Glycine max)is a short-day crop whose flowering time is regulated by photoperiod.The longjuvenile trait extends its vegetative phase and increases yield under short-day conditions.Natural variation in J,the major locus controlling this trait,modulates flowering time.We report that the three J-family genes influence soybean flowering time,with the triple mutant Guangzhou Mammoth-2 flowering late under short days by inhibiting transcription of E1-family genes.J-family genes offer promising allelic combinations for breeding.
基金Supported by School-Level Key Projects at Bengbu Medical College,No.2021byzd109。
文摘BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic evaluation.AIM To determine PBC-associated hub genes and assess their clinical utility for disease prediction.METHODS PBC expression data were obtained from the Gene Expression Omnibus database.Overlapping genes from differential expression analysis and weighted gene coexpression network analysis(WGCNA)were identified as key genes for PBC.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed to explore the potential roles of key genes.Hub genes were identified in protein-protein interaction(PPI)networks using the Degree algorithm in Cytoscape software.The relationship between hub genes and immune cells was investigated.Finally,a Mendelian randomization study was conducted to determine the causal effects of hub genes on PBC.RESULTS We identified 71 overlapping key genes using differential expression analysis and WGCNA.These genes were primarily enriched in pathways related to cytokinecytokine receptor interaction,and Th1,Th2,and Th17 cell differentiation.We utilized Cytoscape software and identified five hub genes(CD247,IL10,CCL5,CCL3,and STAT3)in PPI networks.These hub genes showed a strong correlation with immune cell infiltration in PBC.However,inverse variance weighting analysis did not indicate the causal effects of hub genes on PBC risk.CONCLUSION Hub genes can potentially serve as valuable biomarkers for PBC prediction and treatment,thereby offering significant clinical utility.
基金funded by Guangdong Basic and Applied Basic Research Foundation (Grant No.2023A1515010237)the 2021 Dongguan Provincial Rural Revitalization Program (Grant No.20211800400022)+2 种基金the Guangdong Key Technology Research and Development Program (Grant Nos.2020B020220005,2022B1111040003)the Guangdong Modern Agricultural Industry Technology System Program (Grant No.2023KJ121)the South China Botanical Garden,the Chinese Academy of Sciences (Grant No.QNXM-02)。
文摘Hippeastrum, a highly diverse genus in the Amaryllidaceae family, is a valuable ornamental bulbous flowering plant. Somatic embryogenesis(SE) is an efficient method for mass production of Hippeastrum plantlets. Previous studies have been devoted to the in vitro propagation of Hippeastrum, but the SE and its regulatory networks are rarely reported. In this study, we established a direct SE method of Hippeastrum Bangkok Rose' using leaf bases as explants. MS supplemented with 1.00 mg·L^(-1)NAA +1.00 mg·L^(-1)KT + 0.25 mg·L^(-1)TDZ was the optimal medium for SE. Histological observations showed that the bipolar somatic embryo originated from the epidermal cell layer and underwent initiation,globular, scutellar and coleoptile stages. During SE, endogenous hormones of IAA, CTK, ABA, and SA were highly accumulated. Transcriptomic analysis revealed the genes encoding auxin biosynthesis/metabolic enzymes and efflux carriers were induced, while the auxin receptor of TIR1 and ARF transcriptional repressor of Aux/IAA were down-regulated and up-regulated, respectively, leading to suppression of auxin signaling. In contrast, cytokine signaling was promoted at the early stage of SE, as biosynthesis, transport, and signaling components were up-regulated.Various stress-related genes were up-regulated at the early or late stages of SE. Chromatin remodeling could also be dynamically regulated via distinct expression enzymes that control histone methylation and acetylation during SE. Moreover, key SE regulators, including WOXs and SERKs were highly expressed along with SE. Overall, the present study provides insights into the SE regulatory mechanisms of the Hippeastrum.
基金supported by the Foundation for the National Key R&D Program(2022YFD1800400)Innovative Research Groups of the National Natural Science Foundation of China(32121004)Natural Science Foundation of Guangdong Province of China(2021A1515011159)。
文摘Monitoring the prevalence of antimicrobial resistance genes(ARGs)is vital for addressing the global crisis of antibiotic-resistant bacterial infections.Despite its importance,the characterization of ARGs and microbiome structures,as well as the identification of indicators for routine ARG monitoring in pig farms,are still lacking,particularly concerning variations in antimicrobial exposure in different countries or regions.Here,metagenomics and random forest machine learning were used to elucidate the ARG profiles,microbiome structures,and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe.Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs(P<0.05).ANT(6)-Ib,APH(3')-IIIa,and tet(40)were identified as shared core ARGs between the two pig populations.Furthermore,the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions.Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs,respectively.Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100%and 98.7%,respectively.Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy(r=0.72-0.88).Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs.The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.