期刊文献+
共找到853篇文章
< 1 2 43 >
每页显示 20 50 100
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
1
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 artificial neural network genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
2
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
下载PDF
Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artificial neural network and genetic algorithm 被引量:6
3
作者 Morteza Vadood Majid Safar Johari Ali Reza Rahai 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1937-1946,共10页
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po... While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96). 展开更多
关键词 hot mix asphalt fatigue property reinforced fiber artificial neural network genetic algorithm
下载PDF
The Development of Highly Loaded Turbine Rotating Blades by Using 3D Optimization Design Method of Turbomachinery Blades Based on Artificial Neural Network & Genetic Algorithm 被引量:3
4
作者 周凡贞 冯国泰 蒋洪德 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第4期198-202,共5页
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg... In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%. 展开更多
关键词 optimization design highly loaded rotating blades artificial neural network genetic algorithm
下载PDF
Volume Flow Rate Optimization of an Axial Fan by Artificial Neural Network and Genetic Algorithm 被引量:1
5
作者 Yingkun Zhang Yu Wang Jingyin Li 《Open Journal of Fluid Dynamics》 2019年第3期207-223,共17页
The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade ca... The present study is to improve the volume flow rate of an axial fan through optimizing the blade shape under the demand for a specified static pressure. Fourteen design variables were selected to control the blade camber lines and the stacking line and the values of these variables were determined by using the experimental design method of the Latin Hypercube Sampling (LHS) to generate forty designs. The optimization was carried out using the genetic algorithm (GA) coupled with the artificial neural network (ANN) to increase the volume flow rate of the axial fan under the constraint of a specific motor power and a required static pressure. Differences in the aerodynamic performance and the flow characteristics between the original model and the optimal model were analyzed in detail. The results showed that the volume flow rate of the optimal model increased by 33%. The chord length, the installation angle and the cascade turning angle changed considerably. The forward leaned blade was beneficial to improve the volume flow rate of the axial fan. The axial velocity distribution and the static pressure distribution on the blade surface were improved after optimization. 展开更多
关键词 AXIAL FAN VOLUME Flow Rate genetic Algorithm artificial neural network
下载PDF
Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming
6
作者 Akram ABBASPOUR Davood FARSADIZADEH Mohammad Ali GHORBANI 《Water Science and Engineering》 EI CAS CSCD 2013年第2期189-198,共10页
Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hy... Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models. 展开更多
关键词 artificial neural networks genetic programming corrugated bed Froude number hydraulic jump
下载PDF
Prediction of the Bombay Stock Exchange (BSE) Market Returns Using Artificial Neural Network and Genetic Algorithm
7
作者 Yusuf Perwej Asif Perwej 《Journal of Intelligent Learning Systems and Applications》 2012年第2期108-119,共12页
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca... Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency. 展开更多
关键词 STOCK Market genetic Algorithm Bombay STOCK Exchange (BSE) artificial neural network (ANN) PREDICTION Forecasting Data AUTOREGRESSIVE (AR)
下载PDF
Using Genetic Algorithm to Support Artificial Neural Network for Intrusion Detection System
8
作者 Amin Dastanpour Suhaimi Ibrahim Reza Mashinchi Ali Selamat 《通讯和计算机(中英文版)》 2014年第2期143-147,共5页
关键词 入侵检测系统 人工神经网络 遗传算法 神经网络优化 ANN 数据集 攻击 线程
下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
9
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
下载PDF
Artificial neural networks in steel-mushy aluminum pressing bonding 被引量:1
10
作者 张鹏 刘汉武 +1 位作者 任学平 巴立民 《中国有色金属学会会刊:英文版》 CSCD 2000年第2期213-216,共4页
Artificial neural networks were successfully used to research the modeling of aluminum solid fraction, preheat temperature of steel plate, preheat temperature of dies, free diffusing time before pressing and the inter... Artificial neural networks were successfully used to research the modeling of aluminum solid fraction, preheat temperature of steel plate, preheat temperature of dies, free diffusing time before pressing and the interfacial shear strength in steel mushy aluminum pressing bonding. Further more, the optimum bonding parameters for the largest interfacial shear strength were also optimized with a genetic algorithm. 展开更多
关键词 artificial neural networks steel-mushy ALUMINUM BONDING genetic algorithm
下载PDF
Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA) 被引量:1
11
作者 FANG Jun-long ZHANG Chang-li WANG Shu-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2004年第2期179-183,共5页
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul... We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%. 展开更多
关键词 tomato maturation computer vision artificial neural network genetic algorithms
下载PDF
A Review of an Expert System Design for Crude Oil Distillation Column Using the Neural Networks Model and Process Optimization and Control Using Genetic Algorithm Framework 被引量:1
12
作者 Lekan Taofeek Popoola Gutti Babagana Alfred Akpoveta Susu 《Advances in Chemical Engineering and Science》 2013年第2期164-170,共7页
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (... This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method. 展开更多
关键词 artificial neural network CRUDE Oil Distillation Column genetic ALGORITHM FRAMEWORK Sigmoidal Transfer Function BACK-PROPAGATION ALGORITHM
下载PDF
Rapid Application of Neural Networks and A Genetic Algorithms to Solidified Aging Processes for Copper Alloy
13
作者 苏娟华 刘平 +1 位作者 董企铭 李贺军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期464-467,共4页
Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were use... Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were used for data analysis and optimization. In this paper the input parameters of the artificial neural network (ANN) are the aging temperature and aging time. The outputs of the ANN model are the hardness and conductivity properties. Some explanations of these predicted results from the microstructure and precipitation-hardening viewpoint are given. After the ANN model is trained successfully, genetic algorithms(GAs) are applied for optimizing the aging processes parameters. 展开更多
关键词 copper alloy rapidly solidified aging artificial neural network genetic algorithm
下载PDF
Simulation and Off-line Optimization of an Acrylonitrile Fluidized-bed Reactor Based on Artificial Neural Network
14
作者 李伟 张述伟 +2 位作者 李燕 张沛存 王效斗 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期198-201,共4页
A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgener... A mathematical model is developed for an industrial acrylonitrile fluidized-bed reactor based on arti-ficial neural networks. A new algorithm, which combines the characteristics of both genetic algorithm (GA) andgeneralized delta-rule (GDR) is used to train artificial neural network (ANN) in order to avoid search terminatedat a local optimal solution. For searching the global optimum, a new algorithm called SM-GA, incorporating ad-vantages of both simplex method (SM)and GA, is proposed and applied to optimize the operating conditions of anacrylonitrile fluidized-bed reactor in industry. 展开更多
关键词 SIMULATION OPTIMIZATION artificial neural network genetic algorithm simplex method fluidized-bed reactor ACRYLONITRILE
下载PDF
Applying Neural Network withGenetic Algorithm and FuzzySelection Models to Select Equipmentsfor Fully-Mechanized Coal Mining
15
作者 王新宇 吴瑞明 冯春花 《Journal of China University of Mining and Technology》 2004年第2期147-151,共5页
According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we c... According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining. 展开更多
关键词 genetic algorithm artificial neural network FUZZY SELECTION SELECTION of equipment combination
下载PDF
Neural network fault diagnosis method optimization with rough set and genetic algorithms
16
作者 孙红岩 《Journal of Chongqing University》 CAS 2006年第2期94-97,共4页
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th... Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly. 展开更多
关键词 rough sets genetic algorithm BP algorithms artificial neural network encoding rule
下载PDF
Evaluation of Stiffened End-Plate Moment Connection through Optimized Artificial Neural Network
17
作者 Mehdi Ghassemieh Mohsen Nasseri 《Journal of Software Engineering and Applications》 2012年第3期156-167,共12页
This study involves the development of an analytical model for understanding the behavior of the extended, stiffened end-plate moment connections with eight high strength bolts. Modeling of the connection as an assemb... This study involves the development of an analytical model for understanding the behavior of the extended, stiffened end-plate moment connections with eight high strength bolts. Modeling of the connection as an assemblage of finite elements (FE) used for load deformation analysis, with material, and contact nonlinearities are developed. Results from the FE mathematical model are verified with results from the ANSYS computer program as well as with the test results. Sensitivity and feasibility studies are carried out. Significant geometry and force related variables are introduced;and by varying the geometric variables of the connections within a practical range, a matrix of test cases is obtained. Maximum end-plate separation, maximum bending stresses in the end-plate, and the forces from the connection bolts for these test cases are obtained. From the FE analysis, a database is produced to collect results for the artificial neural network analysis. Finally, salient features of the optimized Artificial Neural Network (ANN) via Genetic Algorithm (GA) analysis are introduced and implemented with the aim of predicting the overall behavior of the connection. 展开更多
关键词 END-PLATE MOMENT CONNECTION Finite Element Method artificial neural network SENSITIVITIES Analysis genetic Algorithm
下载PDF
Times Series Prediction to Basis of a Neural Network Conceived by a Real Genetic Algorithm
18
作者 Raihane Mechgoug Nourddine Golea Abdelmalik Taleb-Ahmed 《Computer Technology and Application》 2011年第3期219-226,共8页
Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorith... Neural network and genetic algorithms are complementary technologies in the design of adaptive intelligent system. Neural network learns from scratch by adjusting the interconnections betweens layers. Genetic algorithms are a popular computing framework that uses principals from natural population genetics to evolve solutions to problems. Various forecasting methods have been developed on the basis of neural network, but accuracy has been matter of concern in these forecasts. In neural network methods forecasted values depend to the choose of neural predictor structure, the number of the input, the lag. To remedy to these problem, in this paper, the authors are investing the applicability of an automatic design of a neural predictor realized by real Genetic Algorithms to predict the future value of a time series. The prediction method is tested by using meteorology time series that are daily and weekly mean temperatures in Melbourne, Australia, 1980-1990. 展开更多
关键词 PREDICTION time series artificial neural network genetic algorithm.
下载PDF
Application of Genetic Algorithms to Optimize Neural Networks for Selected Tribological Tests
19
作者 Tomasz Trzepiecinski Hirpa G. Lemu 《Journal of Mechanics Engineering and Automation》 2012年第2期69-76,共8页
This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variab... This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variables of the artificial neural network has been optimized using genetic algorithm. This process is based on surface parameters of the sheet and dies, sheet material parameters and clamping force as input parameters to train the neural network. In addition to demonstrating the fact that regression statistics model using genetic selection and intelligent problem solver are better than models without preprocessing of input data, the sensitivity analysis of the input variables has been conducted. This avoids the time-consuming testing of neurons in finding the best network architecture. The obtained results from this study have also pointed out that genetic algorithm can successfully be applied to optimize the training set and the outputs agree with experimental results. This allows reduction or elimination of expensive experimental tests to determine friction coefficient value. 展开更多
关键词 FRICTION friction coefficient genetic algorithm artificial neural networks intelligent problem solver.
下载PDF
Semi-autogenous mill power prediction by a hybrid neural genetic algorithm 被引量:2
20
作者 Hoseinian Fatemeh Sadat Abdollahzadeh Aliakbar Rezai Bahram 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期151-158,共8页
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l... There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters. 展开更多
关键词 semi-autogenous mill mill power prediction sensitivity analysis artificial neural network genetic algorithm
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部