期刊文献+
共找到1,618篇文章
< 1 2 81 >
每页显示 20 50 100
Optimization of Membership Function for Fuzzy Control Based on Genetic Algorithm and Its Applications
1
作者 Shi Fei Zheng Fangjing (School of Automation) 《Advances in Manufacturing》 SCIE CAS 1998年第4期37-42,共6页
In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize... In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize MF is always rather complex even difficult. So, to study and develop an effectual aglorithm for MF optimization is a good topic. Allow for the inner advantages of genetic algorithm (GA), it is adopted in the algorithm .The principle and executive procdeure are first presented. Then it is applied in the fuzzy control system of a typical plant. Results of real time run show that the control strategy is encouraging, and the developed algorithm is practicable. 展开更多
关键词 fuzzy control membership function (MF) genetic algorithm (GA) OPTIMIZATION
下载PDF
ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS 被引量:3
2
作者 朱力立 张焕春 经亚枝 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期230-235,共6页
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz... The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP. 展开更多
关键词 adaptive genetic algorithm fuzzy controller dynamic parameters control TSP
下载PDF
FUZZY GLOBAL SLIDING MODE CONTROL BASED ON GENETIC ALGORITHM AND ITS APPLICATION FOR FLIGHT SIMULATOR SERVO SYSTEM 被引量:14
3
作者 LIU Jinkun HE Yuzhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期13-17,共5页
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio... To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively. 展开更多
关键词 Sliding mode control Chattering free fuzzy control genetic algorithm Flight simulator
下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:13
4
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
下载PDF
Fuzzy logic controller design with unevenly-distributed membership function for high performance chamber cooling system 被引量:2
5
作者 曹健鹏 Seok-Kwon Jeong Young-Mi Jung 《Journal of Central South University》 SCIE EI CAS 2014年第7期2684-2692,共9页
Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histo... Fuzzy logic controller adopting unevenly-distributed membership function was presented with the purpose of enhancing performance of the temperature control precision and robustness for the chamber cooling system.Histogram equalization and noise detection were performed to modify the evenly-distributed membership functions of error and error change rate into unevenly-distributed membership functions.Then,the experimental results with evenly and unevenly distributed membership functions were compared under the same outside environment conditions.The experimental results show that the steady-state error is reduced around 40% and the noise disturbance is rejected successfully even though noise range is 60% of the control precision range.The control precision is improved by reducing the steady-state error and the robustness is enhanced by rejecting noise disturbance through the fuzzy logic controller with unevenly-distributed membership function.Moreover,the system energy efficiency and lifetime of electronic expansion valve(EEV) installed in chamber cooling system are improved by adopting the unevenly-distributed membership function. 展开更多
关键词 chamber cooling system fuzzy logic controller unevenly-distributed membership function steady-state error reduction ROBUSTNESS variable speed refrigeration system
下载PDF
Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor 被引量:1
6
作者 Ghoulemallah BOUKHALFA Sebti BELKACEM +1 位作者 Abdesselem CHIKHI Moufid BOUHENTALA 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3974-3985,共12页
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame... The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance. 展开更多
关键词 double star induction machine direct torque control fuzzy second order sliding mode control genetic algorithm biogeography based optimization algorithm
下载PDF
Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm 被引量:1
7
作者 崔平远 Yang Guojun 《High Technology Letters》 EI CAS 2001年第1期63-66,共4页
The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update th... The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm. 展开更多
关键词 Inverse kinematics Neural networks fuzzy control genetic algorithm Fitness function
下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
8
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
下载PDF
On Development of Fuzzy Controller: The Case of Gaussian and Triangular Membership Functions 被引量:1
9
作者 Vincent O. S. Olunloyo Abayomi M. Ajofoyinbo Oye Ibidapo-Obe 《Journal of Signal and Information Processing》 2011年第4期257-265,共9页
In recent years, the use of Fuzzy set theory has been popularised for handling overlap domains in control engineering but this has mostly been within the context of triangular membership functions. In actual practice ... In recent years, the use of Fuzzy set theory has been popularised for handling overlap domains in control engineering but this has mostly been within the context of triangular membership functions. In actual practice however, such domains are hardly triangular and in fact for most engineering applications the membership functions are usually Gaussian and sometimes cosine. In an earlier paper, we derived explicit Fourier series expressions for systematic and dynamic computation of grade of membership in the overlap and non-overlap regions of triangular Fuzzy sets. In another paper, we extended the methodology to cover cases of cosine, exponential and Gaussian Fuzzy sets by presenting explicit Fourier series representation for encoding fuzziness in the overlap and non-overlap domains of Fuzzy sets. This current paper presents the development of a “Fuzzy Controller” device, which incorporates the formal mathematical representation for computing grade of membership of Gaussian and triangular Fuzzy sets. It is shown that triangular approximation of Gaussian membership function in Fuzzy control can lead to wrong linguistic classification which may have adverse effects on operational and control decisions. The development of the Fuzzy controller demonstrates that the proposed technique can indeed be incorporated in engineering systems for dynamic and systematic computation of grade of membership in the overlap and non-overlap regions of Fuzzy sets;and thus provides a basis for the design of embedded Fuzzy controller for mission critical applications. 展开更多
关键词 fuzzy controlLER TRIANGULAR GAUSSIAN FOURIER Series Representation membership functionS
下载PDF
Type-2 Fuzzy Logic Controllers Based Genetic Algorithm for the Position Control of DC Motor 被引量:1
10
作者 Mohammed Zeki Al-Faiz Mohammed S. Saleh Ahmed A. Oglah 《Intelligent Control and Automation》 2013年第1期108-113,共6页
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ... Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme. 展开更多
关键词 Type-2 fuzzy LOGIC controlLER genetic algorithm DC MOTOR
下载PDF
Application of hybrid coded genetic algorithm in fuzzy neural network controller
11
作者 杨振强 杨智民 +2 位作者 王常虹 庄显义 宁慧 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第1期65-68,共4页
Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and binary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during... Presents the fuzzy neural network optimized by hybrid coded genetic algorithm of decimal encoding and binary encoding, the searching ability and stability of genetic algorithms enhanced by using binary encoding during the crossover operation and decimal encoding during the mutation operation, and the way of accepting new individuals by probability adopted, by which a new individual is accepted and its parent is discarded when its fitness is higher than that of its parent, and a new individual is accepted by probability when its fitness is lower than that of its parent. And concludes with calculations made with an example that these improvements enhance the speed of genetic algorithms to optimize the fuzzy neural network controller. 展开更多
关键词 genetic algorithm fuzzy NEURAL network COST function HYBRID CODING
下载PDF
SELF-LEARNING FUZZY CONTROL RULES USING GENETIC ALGORITHMS
12
作者 方建安 邵世煌 《Journal of China Textile University(English Edition)》 EI CAS 1995年第1期7-13,共7页
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ... This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust. 展开更多
关键词 genetic algorithm SELF-LEARNING fuzzy control.
下载PDF
Fuzzy Control of Chaotic System with Genetic Algorithm
13
作者 方建安 郭钊侠 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2002年第3期58-62,共5页
A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows fo... A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust. 展开更多
关键词 fuzzy control CHAOTIC system genetic algorithm reinforcement learning.
下载PDF
Self-learning Fuzzy Controllers Based On a Real-time Reinforcement Genetic Algorithm
14
作者 方建安 苗清影 +1 位作者 郭钊侠 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2002年第2期19-22,共4页
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall... This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result. 展开更多
关键词 fuzzy controller self-learning REAL time reinforcement genetic algorithm
下载PDF
Generating Type 2 Trapezoidal Fuzzy Membership Function Using Genetic Tuning
15
作者 Siti Hajar Khairuddin Mohd Hilmi Hasan +1 位作者 Emilia Akashah P.Akhir Manzoor Ahmed Hashmani 《Computers, Materials & Continua》 SCIE EI 2022年第4期717-734,共18页
Fuzzy inference system(FIS)is a process of fuzzy logic reasoning to produce the output based on fuzzified inputs.The system starts with identifying input from data,applying the fuzziness to input using membership func... Fuzzy inference system(FIS)is a process of fuzzy logic reasoning to produce the output based on fuzzified inputs.The system starts with identifying input from data,applying the fuzziness to input using membership functions(MF),generating fuzzy rules for the fuzzy sets and obtaining the output.There are several types of input MFs which can be introduced in FIS,commonly chosen based on the type of real data,sensitivity of certain rule implied and computational limits.This paper focuses on the construction of interval type 2(IT2)trapezoidal shape MF from fuzzy C Means(FCM)that is used for fuzzification process of mamdani FIS.In the process,upper MF(UMF)and lower MF(LMF)of the MF need to be identified to get the range of the footprint of uncertainty(FOU).This paper proposes Genetic tuning process,which is a part of genetic algorithm(GA),to adjust parameters in order to improve the behavior of existing system,especially to enhance the accuracy of the system model.This novel process is a hybrid approach which produces Genetic Fuzzy System(GFS)that helps to enhance fuzzy classification problems and performance.The approach provides a new method for the construction and tuning process of the IT2 MF,based on the FCM outcomes.The result is compared to Gaussian shape IT2 MF and trapezoid IT2 MF generated by the classic GA method.It is shown that the proposed approach is able to outperform the mentioned benchmarked approaches.The work implies a wider range of IT2 MF types,constructed based on FCM outcomes,and an optimum generation of the FOU so that it can be implemented in practical applications such as prediction,analytics and rule-based solutions. 展开更多
关键词 fuzzy inference system membership function genetic tuning lateral adjustment trapezoidal MF fuzzy C means
下载PDF
Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm
16
作者 初红艳 Yang Junjing Cai Ligang 《High Technology Letters》 EI CAS 2015年第1期15-21,共7页
In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by t... In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste. 展开更多
关键词 offset printing colour quality control impact factor fuzzy control genetic algorithm
下载PDF
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
17
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
下载PDF
Fuzzy traffic signal control with DNA evolutionary algorithm 被引量:2
18
作者 毕云蕊 路小波 +1 位作者 孙哲 曾唯理 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期207-210,共4页
In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation character... In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method. 展开更多
关键词 DNA evolutionary algorithm genetic algorithm(GA) fuzzy control traffic signal control
下载PDF
Neutrosophic Adaptive Clustering Optimization in Genetic Algorithm and Its Application in Cubic Assignment Problem 被引量:1
19
作者 Fangwei Zhang Shihe Xu +2 位作者 Bing Han Liming Zhang Jun Ye 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2211-2226,共16页
In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuri... In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA. 展开更多
关键词 Neutrosophic fuzzy set heuristic algorithm genetic algorithm intelligent control warehouse operation
下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
20
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部