When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s...When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analy...Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analysis of mammographic images,challenges such as low contrast,image noise,and the high dimensionality of features often degrade model performance.Addressing these challenges,our study introduces a novel method integrating Genetic Algorithms(GA)with pre-trained Convolutional Neural Network(CNN)models to enhance feature selection and classification accuracy.Our approach involves a systematic process:first,we employ widely-used CNN architectures(VGG16,VGG19,MobileNet,and DenseNet)to extract a broad range of features from the Medical Image Analysis Society(MIAS)mammography dataset.Subsequently,a GA optimizes these features by selecting the most relevant and least redundant,aiming to overcome the typical pitfalls of high dimensionality.The selected features are then utilized to train several classifiers,including Linear and Polynomial Support Vector Machines(SVMs),K-Nearest Neighbors,Decision Trees,and Random Forests,enabling a robust evaluation of the method’s effectiveness across varied learning algorithms.Our extensive experimental evaluation demonstrates that the integration of MobileNet and GA significantly improves classification accuracy,from 83.33%to 89.58%,underscoring the method’s efficacy.By detailing these steps,we highlight the innovation of our approach which not only addresses key issues in breast cancer imaging analysis but also offers a scalable solution potentially applicable to other domains within medical imaging.展开更多
Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic alg...Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algorithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.展开更多
This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variab...This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variables of the artificial neural network has been optimized using genetic algorithm. This process is based on surface parameters of the sheet and dies, sheet material parameters and clamping force as input parameters to train the neural network. In addition to demonstrating the fact that regression statistics model using genetic selection and intelligent problem solver are better than models without preprocessing of input data, the sensitivity analysis of the input variables has been conducted. This avoids the time-consuming testing of neurons in finding the best network architecture. The obtained results from this study have also pointed out that genetic algorithm can successfully be applied to optimize the training set and the outputs agree with experimental results. This allows reduction or elimination of expensive experimental tests to determine friction coefficient value.展开更多
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne...In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.展开更多
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a...Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.展开更多
A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weigh...A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weights of reservoir parameters through sample training and genetic algorithm was used to optimize the initial connection weights of nerve cells in case the neural network fell into a local minimum. Additionally, subordinate functions of each parameter were established to normalize the actual values of parameters of coalbed methane reservoirs in the range between zero and unity. Eventually, evaluation values of all coalbed methane reservoirs could be obtained by using the comprehensive evaluation method, which is the basis to rank the coalbed methane reservoirs in the order of exploitation priority. The greater the evaluation value, the higher the exploitation priority. The ranking method was verified in this paper by ten exploited coalbed methane reservoirs in China. The evaluation results are in agreement with the actual exploitation cases. The method can ensure the truthfulness and credibility of the weights of parameters and avoid the subjectivity caused by experts. Furthermore, the probability of falling into local minima is reduced, because genetic the algorithm is used to optimize the neural network system.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural ...Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural network which enables the gyro temperature drift rate to be compensated in the process of startup and the gyro instant startup to be implemented. And introduces an improved genetic algorithm to learn the weights of neural network identifier to avoid stacking into the local minimal value and achieve rapid convergence.展开更多
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ...In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.展开更多
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul...We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%.展开更多
[ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by ...[ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by extrusion process, and a three-layer back propagation neural network was established to predict the degradation of free gossypol. [ Result] The result of 10-fold cross validation showed that the ANN with the training function as traingdx at hidden layer with eight neurons gave the smallest mean square error (MSE). ANN predicted results were very close to the experimental results with correlation coefficient (R2 ) of 0.994 1 and RMSE of 0.497 1. A genetic algorithm (GA) based on the established neural network model was also used for optimizing de-gossypol process. The re- sults of GA showed that the optimal conditions of de-gossypol were puffing temperature 131℃, water ratio 51% , rotational speed 158 r/rain, and feeding speed 136 kg/h, while under this condition the degradation rate of free gossypol was 90.50%, which was close to the predicted result of CA with the small average relative er- ror of 1.38%. [ Conclusion] These results suggested that the GA based on a neural network model might be an excellent tool for optimizing cottonseed meal de-gos- sypol process.展开更多
The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update th...The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm.展开更多
Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of O...Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of Opportunity” and autocorrelation. In this paper, advanced T2 statistics model and neural networks scheme are combined to solve the above problems: use T2 statistics technique to solve the problem of autocorrelation;adopt neural networks technique to solve the problem of “Window of Opportunity” and identification of disturbance causes. At the same time, regarding the shortcoming of neural network technique that its algorithm has a low speed of convergence and it is usually plunged into local optimum easily. Genetic algorithm was proposed to train samples in this paper. Results of the simulation ex-periments show that this method can detect the process disturbance quickly and accurately as well as identify the dis-turbance type.展开更多
The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding t...The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.展开更多
Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth ...Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization. The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model.展开更多
It is very important to estimate the basic parameters in helicopter preliminary design. Neural Network (NN) has the advantages in estimating accuracy and generalization over traditional methods. However, there are s...It is very important to estimate the basic parameters in helicopter preliminary design. Neural Network (NN) has the advantages in estimating accuracy and generalization over traditional methods. However, there are some difficulties in using NN, e.g., how to select a proper network structure and the number of hidden layers. In this paper, structure and connection weight of a three-layer NN are optimized by genetic algorithm, and the optimized network is applied to helicopter sizing. The proposed method can not only give an optimal NN structure and connection weight, but also reduce the prediction error and has the capability of self-learning when the latest data are available. Furthermore, this method can be easily applied to helicopter design systems.展开更多
Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were use...Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were used for data analysis and optimization. In this paper the input parameters of the artificial neural network (ANN) are the aging temperature and aging time. The outputs of the ANN model are the hardness and conductivity properties. Some explanations of these predicted results from the microstructure and precipitation-hardening viewpoint are given. After the ANN model is trained successfully, genetic algorithms(GAs) are applied for optimizing the aging processes parameters.展开更多
According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we c...According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining.展开更多
文摘When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,“Ministry of Education”in Saudi Arabia for funding this research work through the project number (IFKSUDR_D127).
文摘Breast cancer diagnosis through mammography is a pivotal application within medical image-based diagnostics,integral for early detection and effective treatment.While deep learning has significantly advanced the analysis of mammographic images,challenges such as low contrast,image noise,and the high dimensionality of features often degrade model performance.Addressing these challenges,our study introduces a novel method integrating Genetic Algorithms(GA)with pre-trained Convolutional Neural Network(CNN)models to enhance feature selection and classification accuracy.Our approach involves a systematic process:first,we employ widely-used CNN architectures(VGG16,VGG19,MobileNet,and DenseNet)to extract a broad range of features from the Medical Image Analysis Society(MIAS)mammography dataset.Subsequently,a GA optimizes these features by selecting the most relevant and least redundant,aiming to overcome the typical pitfalls of high dimensionality.The selected features are then utilized to train several classifiers,including Linear and Polynomial Support Vector Machines(SVMs),K-Nearest Neighbors,Decision Trees,and Random Forests,enabling a robust evaluation of the method’s effectiveness across varied learning algorithms.Our extensive experimental evaluation demonstrates that the integration of MobileNet and GA significantly improves classification accuracy,from 83.33%to 89.58%,underscoring the method’s efficacy.By detailing these steps,we highlight the innovation of our approach which not only addresses key issues in breast cancer imaging analysis but also offers a scalable solution potentially applicable to other domains within medical imaging.
基金Supported by National Natural Science Foundation of China (No60874077) Specialized Research Funds for Doctoral Program of Higher Education of China (No20060056054) Research Funds for Scientific Financing Projects of Quality Control Public Welfare Profession (No2007GYB172)
文摘Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algorithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.
文摘This paper presents a method of determining the friction coefficient in metal forming using multilayer artificial neural networks based on experimental data obtained from strip drawing test. The number of input variables of the artificial neural network has been optimized using genetic algorithm. This process is based on surface parameters of the sheet and dies, sheet material parameters and clamping force as input parameters to train the neural network. In addition to demonstrating the fact that regression statistics model using genetic selection and intelligent problem solver are better than models without preprocessing of input data, the sensitivity analysis of the input variables has been conducted. This avoids the time-consuming testing of neurons in finding the best network architecture. The obtained results from this study have also pointed out that genetic algorithm can successfully be applied to optimize the training set and the outputs agree with experimental results. This allows reduction or elimination of expensive experimental tests to determine friction coefficient value.
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa University,Riyadh,Saudi Arabia.
文摘In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.
文摘Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.
基金EU-China Energy and Environment Programme(Europe Aid/120723/D/SV/CN)Research Fund for the Doctoral Program of Higher Education of China(20030425001)
文摘A new method based on the combination of a neural network and a genetic algorithm was proposed to rank the order of exploitation priority of coalbed methane reservoirs. The neural network was used to acquire the weights of reservoir parameters through sample training and genetic algorithm was used to optimize the initial connection weights of nerve cells in case the neural network fell into a local minimum. Additionally, subordinate functions of each parameter were established to normalize the actual values of parameters of coalbed methane reservoirs in the range between zero and unity. Eventually, evaluation values of all coalbed methane reservoirs could be obtained by using the comprehensive evaluation method, which is the basis to rank the coalbed methane reservoirs in the order of exploitation priority. The greater the evaluation value, the higher the exploitation priority. The ranking method was verified in this paper by ten exploited coalbed methane reservoirs in China. The evaluation results are in agreement with the actual exploitation cases. The method can ensure the truthfulness and credibility of the weights of parameters and avoid the subjectivity caused by experts. Furthermore, the probability of falling into local minima is reduced, because genetic the algorithm is used to optimize the neural network system.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
文摘Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural network which enables the gyro temperature drift rate to be compensated in the process of startup and the gyro instant startup to be implemented. And introduces an improved genetic algorithm to learn the weights of neural network identifier to avoid stacking into the local minimal value and achieve rapid convergence.
文摘In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.
文摘We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%.
基金Supported by Guide Project of Xinjiang Academy of Agricultural and Reclamation Science(60YYD201308)
文摘[ Objective] The paper aimed to optimize cottonseed meal de-gossypol process by extrusion. [ Method ] The artificial neural network (ANN) was used to stimulate the degradation of free gossypol in cottonseed meal by extrusion process, and a three-layer back propagation neural network was established to predict the degradation of free gossypol. [ Result] The result of 10-fold cross validation showed that the ANN with the training function as traingdx at hidden layer with eight neurons gave the smallest mean square error (MSE). ANN predicted results were very close to the experimental results with correlation coefficient (R2 ) of 0.994 1 and RMSE of 0.497 1. A genetic algorithm (GA) based on the established neural network model was also used for optimizing de-gossypol process. The re- sults of GA showed that the optimal conditions of de-gossypol were puffing temperature 131℃, water ratio 51% , rotational speed 158 r/rain, and feeding speed 136 kg/h, while under this condition the degradation rate of free gossypol was 90.50%, which was close to the predicted result of CA with the small average relative er- ror of 1.38%. [ Conclusion] These results suggested that the GA based on a neural network model might be an excellent tool for optimizing cottonseed meal de-gos- sypol process.
文摘The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm.
文摘Integrated use of statistical process control (SPC) and engineering process control (EPC) has better performance than that by solely using SPC or EPC. But integrated scheme has resulted in the problem of “Window of Opportunity” and autocorrelation. In this paper, advanced T2 statistics model and neural networks scheme are combined to solve the above problems: use T2 statistics technique to solve the problem of autocorrelation;adopt neural networks technique to solve the problem of “Window of Opportunity” and identification of disturbance causes. At the same time, regarding the shortcoming of neural network technique that its algorithm has a low speed of convergence and it is usually plunged into local optimum easily. Genetic algorithm was proposed to train samples in this paper. Results of the simulation ex-periments show that this method can detect the process disturbance quickly and accurately as well as identify the dis-turbance type.
文摘The study on scientific analysis and prediction of China’s future carbon emissions is conducive to balancing the relationship between economic development and carbon emissions in the new era,and actively responding to climate change policy.Through the analysis of the application of the generalized regression neural network(GRNN)in prediction,this paper improved the prediction method of GRNN.Genetic algorithm(GA)was adopted to search the optimal smooth factor as the only factor of GRNN,which was then used for prediction in GRNN.During the prediction of carbon dioxide emissions using the improved method,the increments of data were taken into account.The target values were obtained after the calculation of the predicted results.Finally,compared with the results of GRNN,the improved method realized higher prediction accuracy.It thus offers a new way of predicting total carbon dioxide emissions,and the prediction results can provide macroscopic guidance and decision-making reference for China’s environmental protection and trading of carbon emissions.
文摘Considering the indefinite character of the value of design parameters and being satisfied with load-bearing capacity and stiffness, the fuzzy optimization mathematical model is set up to minimize the volume of tooth corona of a worm gear in an elevator mechanism. The method of second-class comprehensive evaluation was used based on the optimal level cut set, thus the optimal level value of every fuzzy constraint can be attained; the fuzzy optimization is transformed into the usual optimization. The Fast Back Propagation of the neural networks algorithm are adopted to train feed-forward networks so as to fit a relative coefficient. Then the fitness function with penalty terms is built by a penalty strategy, a neural networks program is recalled, and solver functions of the Genetic Algorithm Toolbox of Matlab software are adopted to solve the optimization model.
文摘It is very important to estimate the basic parameters in helicopter preliminary design. Neural Network (NN) has the advantages in estimating accuracy and generalization over traditional methods. However, there are some difficulties in using NN, e.g., how to select a proper network structure and the number of hidden layers. In this paper, structure and connection weight of a three-layer NN are optimized by genetic algorithm, and the optimized network is applied to helicopter sizing. The proposed method can not only give an optimal NN structure and connection weight, but also reduce the prediction error and has the capability of self-learning when the latest data are available. Furthermore, this method can be easily applied to helicopter design systems.
文摘Rapidly solidified aging is an effective way to refine the microstructure of Cu-Cr-Sn-Zn lead frame alloy and enhance its hardness. The artificial neural network methodology(ANN) along with genetic algorithms were used for data analysis and optimization. In this paper the input parameters of the artificial neural network (ANN) are the aging temperature and aging time. The outputs of the ANN model are the hardness and conductivity properties. Some explanations of these predicted results from the microstructure and precipitation-hardening viewpoint are given. After the ANN model is trained successfully, genetic algorithms(GAs) are applied for optimizing the aging processes parameters.
文摘According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining.