Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques....Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further.展开更多
In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of po...In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.展开更多
This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the ...This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the results of GA, further improving the solution quality. The problem formulation is done in the framework named RUNE (fRamework for aUtomated aNalog dEsign), which targets solving nonlinear mono-objective and multi-objective optimization problems for analog circuits design. Two circuits are presented: a transimpedance amplifier (TIA) and an optical driver (Driver), which are both part of an Optical Network-on-Chip (ONoC). Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results obtained with SQP algorithm. The outcome is very encouraging and suggests that the hybrid proposed method is very efficient in solving analog design problems.展开更多
This paper proposes a stochastic optimal technique based on Genetic Algorithm (GA) for the calculation of multiphase and multicomponent chemical equilibrium by minimization of Gibbs free energy. Three aspects are impr...This paper proposes a stochastic optimal technique based on Genetic Algorithm (GA) for the calculation of multiphase and multicomponent chemical equilibrium by minimization of Gibbs free energy. Three aspects are improved based on the drawbacks of the conventional GA.An alternative decimal encoding strategy is adopted to enhance the precision of calculation.A dynamic encoding method that can limit the bounds of optimized variables within their feasible regions is developed to cope with the complex constraints of the problem.Finally,sequential search technique is applied to improve GA to approach global optima.It is shown through the calculation of complex chemical systems,in which non-ideal,multireaction and multiphase coexistence are simultaneously involved,that the presented GA is general and efficient for the addressed problem.展开更多
基金This work was supported by the Research Grant of SEC E-Institute :Shanghai High Institution Grid and the Science Foundation ofShanghai Municipal Commission of Science and Technology No.00JC14052
文摘Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further.
基金supported by the National High Technology Research and Development Program of China(2012AA050801)
文摘In this study, we investigate the optimal location of access points (APs) to connect end nodes with a service provider through power-line communication in smartgrid communication networks. APs are the gateways of power-distribution communication networks, connecting users to control centers. Hence, they are vital for the reliable, safe, and economical operation of a power system. This paper proposes a planning method for AP allocation that takes into consideration economics, reliability, network delay, and (n-l) resilience. First, an optimization model for the AP location is established, which minimizes the cost of installing APs, while satisfying the reliability, network delay, and (n-1) resilience constraints. Then, an improved genetic algorithm is proposed to solve the optimization problem. The simulation results indicate that the proposed planning method can deal with diverse network conditions satisfactorily. Furthermore, it can be applied effectively with high flexibility and scalability.
文摘This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the results of GA, further improving the solution quality. The problem formulation is done in the framework named RUNE (fRamework for aUtomated aNalog dEsign), which targets solving nonlinear mono-objective and multi-objective optimization problems for analog circuits design. Two circuits are presented: a transimpedance amplifier (TIA) and an optical driver (Driver), which are both part of an Optical Network-on-Chip (ONoC). Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results obtained with SQP algorithm. The outcome is very encouraging and suggests that the hybrid proposed method is very efficient in solving analog design problems.
文摘This paper proposes a stochastic optimal technique based on Genetic Algorithm (GA) for the calculation of multiphase and multicomponent chemical equilibrium by minimization of Gibbs free energy. Three aspects are improved based on the drawbacks of the conventional GA.An alternative decimal encoding strategy is adopted to enhance the precision of calculation.A dynamic encoding method that can limit the bounds of optimized variables within their feasible regions is developed to cope with the complex constraints of the problem.Finally,sequential search technique is applied to improve GA to approach global optima.It is shown through the calculation of complex chemical systems,in which non-ideal,multireaction and multiphase coexistence are simultaneously involved,that the presented GA is general and efficient for the addressed problem.