期刊文献+
共找到765篇文章
< 1 2 39 >
每页显示 20 50 100
Using Genetic Algorithms for Solving the Comparison-Based Identification Problem of Multifactor Estimation Model
1
作者 Andraws Swidan Shmatkov Sergey Bulavin Dmitry 《Journal of Software Engineering and Applications》 2013年第7期349-353,共5页
In this paper the statement and the methods for solving the comparison-based structure-parametric identification problem of multifactor estimation model are addressed. A new method that combines heuristics methods wit... In this paper the statement and the methods for solving the comparison-based structure-parametric identification problem of multifactor estimation model are addressed. A new method that combines heuristics methods with genetic algorithms is proposed to solve the problem. In order to overcome some disadvantages of using the classical utility functions, the use of nonlinear Kolmogorov-Gabor polynomial, which contains in its composition the first as well as higher characteristics degrees and all their possible combinations is proposed in this paper. The use of nonlinear methods for identification of the multifactor estimation model showed that the use of this new technique, using as a utility function the nonlinear Kolmogorov-Gabor polynomial and the use of genetic algorithms to calculate the weights, gives a considerable saving in time and accuracy performance. This method is also simpler and more evident for the decision maker (DM) than other methods. 展开更多
关键词 genetic Algorithm Comparatory Identification fitness-function CHROMOSOME CROSSOVER MUTATION
下载PDF
Composite multiobjective optimization beamforming based on genetic algorithms 被引量:1
2
作者 史兢 Meng Weixiao Zhang Naitong Wang Zheng 《High Technology Letters》 EI CAS 2006年第3期283-287,共5页
All the parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs). Firstly, this pap... All the parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs). Firstly, this paper analyzes the performance of fitness functions of previous algorithms. It shows that original algorithms make the fitness functions too complex leading to large amount of calculation, and also the selection of the weight of parameters very sensitive due to many parameters optimized simultaneously. This paper proposes a kind of algorithm of composite beamforming, which detaches the antenna array into two parts corresponding to optimization of different objective parameters respectively. New algorithm substitutes the previous complex fitness function with two simpler functions. Both theoretical analysis and simulation results show that this method simplifies the selection of weighting parameters and reduces the complexity of calculation. Furthermore, the algorithm has better performance in lowering side lobe and interferences in comparison with conventional algorithms of beamforming in the case of slightly widening the main lobe. 展开更多
关键词 genetic algorithms composite beamforming fitness function
下载PDF
Generalized Self-Adaptive Genetic Algorithms
3
作者 Bin Wu Xuyan Tu +1 位作者 Jian Wu Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China Department of Information and Control Engineering, Southwest Institute of Technology, Mianyang 621002, China 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第1期72-75,共4页
In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed init... In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed initial population is generated. (2) Superior individuals are not broken because of crossover and mutation operation for they are sent to subgeneration directly. (3) High quality im- migrants are introduced according to the condition of the population schema. (4) Crossover and mutation are operated on self-adaptation. Therefore, GSAGA solves the coordination problem between convergence and searching performance. In GSAGA, the searching per- formance and global convergence are greatly improved compared with many existing genetic algorithms. Through simulation, the val- idity of this modified genetic algorithm is proved. 展开更多
关键词 generalized self-adaptive genetic algorithm initial population IMMIGRATION fitness function
下载PDF
NON-LINEAR DYNAMIC MODEL RETRIEVAL OF SUBTROPICAL HIGH BASED ON EMPIRICAL ORTHOGONAL FUNCTION AND GENETIC ALGORITHM
4
作者 张韧 洪梅 +4 位作者 孙照渤 牛生杰 朱伟军 闵锦忠 万齐林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1645-1653,共9页
Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirica... Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high. 展开更多
关键词 genetic algorithm empirical orthogonal function non-linear model retrieval subtropical high
下载PDF
Parameter Estimation of a Distributed Hydrological Model Using a Genetic Algorithm 被引量:1
5
作者 Jasmin Boisvert Nassir El-Jabi +1 位作者 André St-Hilaire Salah-Eddine El Adlouni 《Open Journal of Modern Hydrology》 2016年第3期151-167,共18页
Water is a vital resource, and can also sometimes be a destructive force. As such, it is important to manage this resource. The prediction of stream flows is an important component of this management. Hydrological mod... Water is a vital resource, and can also sometimes be a destructive force. As such, it is important to manage this resource. The prediction of stream flows is an important component of this management. Hydrological models are very useful in accomplishing this task. The objective of this study is to develop and apply an optimization method useful for calibrating a deterministic model of the daily flows of the Miramichi River watershed (New Brunswick). The model used is the CEQUEAU model. The model is calibrated by applying a genetic algorithm. The Nash-Sutcliffe efficiency criterion, modified to penalize physically unrealistic results, was used as the objective function. The model was calibrated using flow data (1975-2000) from a gauging station on the Southwest Miramichi River (catchment area of 5050 km2), obtaining a Nash-Sutcliffe criterion of 0.83. Model validation was performed using flow data (2001-2009) from the same station (Nash-Sutcliffe criterion value of 0.80). This suggests that the model calibration is sufficiently robust to be used for future predictions. A second model validation was performed using data from three other measuring stations on the same watershed. The model performed well in all three additional locations (Nash-Sutcliffe criterion values of 0.77, 0.76 and 0.74), but was performing less well when applied to smaller sub-basins. Nonetheless, the relatively strong performance of the model suggests that it could be used to predict flows anywhere in the watershed, but caution is suggested for applications in small sub-basins. The performance of the CEQUEAU model was also compared to a simple benchmark model (average of each calendar day). A sensitivity analysis was also performed. 展开更多
关键词 Hydrological modeling genetic Algorithm CEQUEAU model Beta function Miramichi River
下载PDF
A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor
6
作者 Along Yu Zheng Li 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期611-613,共3页
In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.... In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS). 展开更多
关键词 modelING eddy current sensor functional link neural network genetic algorithm genetic neural network
下载PDF
GENETIC ALGORITHM WITH FUZZY FITNESS EVALUATION
7
作者 Huang Jianjun(1105 Lab., Northwestern Polytechnical University, Xi’an, 710072)Xie Weixin (202 Lab. , School of Electronic Engineering, Xidian University, Xi’an, 710071) 《Journal of Electronics(China)》 1998年第3期254-258,共5页
Using a fuzzy estimator to evaluate the fitness of chromosomes in a genetic algorithm and adaptively training it in the evolutionary process, the genetic algorithm with fuzzy fitness evaluation is proposed to reduce t... Using a fuzzy estimator to evaluate the fitness of chromosomes in a genetic algorithm and adaptively training it in the evolutionary process, the genetic algorithm with fuzzy fitness evaluation is proposed to reduce the computation time of the algorithm. An analysis on the optimization performance of the proposed algorithm shows that it maintains good performance with its computation time saved. Finally, simulation results on design of a fuzzy controller are presented. 展开更多
关键词 FUZZY evaluation fitness function genetic algorithm COMPUTATION time
下载PDF
Kautz Function Based Continuous-Time Model Predictive Controller for Load Frequency Control in a Multi-Area Power System
8
作者 A.Parassuram P.Somasundaram 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第11期169-187,共19页
A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model P... A continuous-time Model Predictive Controller was proposed using Kautz function in order to improve the performance of Load Frequency Control(LFC).A dynamic model of an interconnected power system was used for Model Predictive Controller(MPC)design.MPC predicts the future trajectory of the dynamic model by calculating the optimal closed loop feedback gain matrix.In this paper,the optimal closed loop feedback gain matrix was calculated using Kautz function.Being an Orthonormal Basis Function(OBF),Kautz function has an advantage of solving complex pole-based nonlinear system.Genetic Algorithm(GA)was applied to optimally tune the Kautz function-based MPC.A constraint based on phase plane analysis was implemented with the cost function in order to improve the robustness of the Kautz function-based MPC.The proposed method was simulated with three area interconnected power system and the efficiency of the proposed method was measured and exhibited by comparing with conventional Proportional and Integral(PI)controller and Linear Quadratic Regulation(LQR). 展开更多
关键词 Load frequency control model PREDICTIVE CONTROLLER orthonormal basis function kautz function phase plane analysis linear QUADRATIC REGULATOR proportional and integral CONTROLLER genetic algorithm.
下载PDF
Dynamic finite element model updating of prestressed concrete continuous box-girder bridge 被引量:6
9
作者 Lin Xiankun Zhang Lingmi +1 位作者 Guo Qintao Zhang Yufeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期399-407,共9页
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a... The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge . 展开更多
关键词 prestressed concrete continuous box-girder bridge field ambient vibration testing dynamic characteristics model updating accelerating genetic algorithm objective function
下载PDF
Neural network and genetic algorithm based global path planning in a static environment 被引量:2
10
作者 杜歆 陈华华 顾伟康 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期549-554,共6页
Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network m... Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective. 展开更多
关键词 Mobile robot Neural network genetic algorithm Global path planning fitness function
下载PDF
A New Clustering Protocol for Wireless Sensor Networks Using Genetic Algorithm Approach 被引量:2
11
作者 Ali Norouzi Faezeh Sadat Babamir Abdul Halim Zaim 《Wireless Sensor Network》 2011年第11期362-370,共9页
This paper examines the optimization of the lifetime and energy consumption of Wireless Sensor Networks (WSNs). These two competing objectives have a deep influence over the service qualification of networks and accor... This paper examines the optimization of the lifetime and energy consumption of Wireless Sensor Networks (WSNs). These two competing objectives have a deep influence over the service qualification of networks and according to recent studies, cluster formation is an appropriate solution for their achievement. To transmit aggregated data to the Base Station (BS), logical nodes called Cluster Heads (CHs) are required to relay data from the fixed-range sensing nodes located in the ground to high altitude aircraft. This study investigates the Genetic Algorithm (GA) as a dynamic technique to find optimum states. It is a simple framework that includes a proposed mathematical formula, which increasing in coverage is benchmarked against lifetime. Finally, the implementation of the proposed algorithm indicates a better efficiency compared to other simulated works. 展开更多
关键词 WIRELESS Sensor Network Energy CONSUMPTION genetic Algorithm CLUSTER Based fitness function
下载PDF
Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm 被引量:1
12
作者 崔平远 Yang Guojun 《High Technology Letters》 EI CAS 2001年第1期63-66,共4页
The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update th... The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm. 展开更多
关键词 Inverse kinematics Neural networks Fuzzy control genetic algorithm fitness function
下载PDF
Groundwater level prediction based on hybrid hierarchy genetic algorithm and RBF neural network 被引量:1
13
作者 屈吉鸿 黄强 +1 位作者 陈南祥 徐建新 《Journal of Coal Science & Engineering(China)》 2007年第2期170-174,共5页
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi... As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision. 展开更多
关键词 hybrid hierarchy genetic algorithm radial basis function neural network groundwater level prediction model
下载PDF
A Highly Effective DPA Attack Method Based on Genetic Algorithm
14
作者 Shuaiwei Zhang Xiaoyuan Yang +1 位作者 Weidong Zhong Yujuan Sun 《Computers, Materials & Continua》 SCIE EI 2018年第8期325-338,共14页
As one of the typical method for side channel attack,DPA has become a serious trouble for the security of encryption algorithm implementation.The potential capability of DPA attack induces researchers making a lot of ... As one of the typical method for side channel attack,DPA has become a serious trouble for the security of encryption algorithm implementation.The potential capability of DPA attack induces researchers making a lot of efforts in this area,which significantly improved the attack efficiency of DPA.However,most of these efforts were made based on the hypothesis that the gathered power consumption data from the target device were stable and low noise.If large deviation happens in part of the power consumption data sample,the efficiency of DPA attack will be reduced rapidly.In this work,a highly efficient method for DPA attack is proposed with the inspiration of genetic algorithm.Based on the designed fitness function,power consumption data that is stable and less noisy will be selected and the noisy ones will be eliminated.In this way,not only improves the robustness and efficiency of DPA attack,but also reduces the number of samples needed.With experiments on block cipher algorithms of DES and SM4,10%and 12.5%of the number of power consumption curves have been reduced in average with the proposed DPAG algorithm compared to original DPA attack respectively.The high efficiency and correctness of the proposed algorithm and novel model are proved by experiments. 展开更多
关键词 DPA EFFICIENCY noise genetic algorithm fitness function novel model
下载PDF
改进蚁群算法的送餐机器人路径规划 被引量:5
15
作者 蔡军 钟志远 《智能系统学报》 CSCD 北大核心 2024年第2期370-380,共11页
蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的... 蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。 展开更多
关键词 蚁群算法 遗传算法 状态转移公式 适应度函数 引导素 局部最优 初始种群 时间窗约束 路径规划
下载PDF
A Simple Application and Design of Genetic Algorithm in Card Problem
16
作者 顾鹏程 《电脑知识与技术》 2016年第2Z期25-26,共2页
According to traditional card problem solving which is based on the idea of genetic algorithm(GA),a set of algorithms is designed to find final solution.For each process in genetic algorithm,including choices of fitne... According to traditional card problem solving which is based on the idea of genetic algorithm(GA),a set of algorithms is designed to find final solution.For each process in genetic algorithm,including choices of fitness function,parameters determination and coding scheme selection,classic algorithm is used to realize the various steps,and ultimately to find solution of problems. 展开更多
关键词 genetic algorithm card problem fitness function parameters determination coding scheme selection
下载PDF
基于遗传算法的磨削力模型系数优化及验证 被引量:1
17
作者 王栋 张志鹏 +3 位作者 赵睿 张君宇 乔瑞勇 孙少铮 《郑州大学学报(工学版)》 北大核心 2024年第1期21-28,共8页
在磨削力模型求解问题中,目前大多使用分段计算法或列方程组直接计算各个待求系数,不仅计算量大且其精度也无法保证。另外,传统的回归模型容易陷入局部最优,难以描述非线性关系。为此,将遗传算法引入到非线性优化函数参数优化中,基于外... 在磨削力模型求解问题中,目前大多使用分段计算法或列方程组直接计算各个待求系数,不仅计算量大且其精度也无法保证。另外,传统的回归模型容易陷入局部最优,难以描述非线性关系。为此,将遗传算法引入到非线性优化函数参数优化中,基于外圆横向磨削力模型、平面磨削力模型、外圆纵向磨削力模型等现有的模型数据,开展磨削力理论模型的系数优化方法研究。相关性分析结果表明:通过计算得到的3种模型磨削力的预测精度提高了14.69%~42.54%,且3种模型所预测的法向磨削力的平均误差分别为5.9%、9.13%、3.23%,切向力平均误差分别为6.78%、8.36%、3.69%。经对比知,优化后的模型拟合度较好,模型预测精度显著提高。遗传算法优化后的非线性优化函数GA-LSQ算法更适合磨削力模型的求解,可对磨削力的预测及实际加工生产中的参数优化提供参考。 展开更多
关键词 磨削力模型 外圆磨削 平面磨削 经验公式 模型系数优化 模型预测 遗传算法 非线性优化函数
下载PDF
基于CGA的MPI程序分支覆盖测试套件生成
18
作者 袁剑锋 刘佳 郭建卫 《计算机技术与发展》 2024年第7期78-86,共9页
针对程序的分支覆盖测试,元启发式搜索技术已经被广泛应用于测试数据生成中。然而,当前的研究成果主要适用于串行程序。因此,为覆盖消息传递接口(Message Passing Interface,MPI)程序的分支,该文研究基于协同进化遗传算法(Co-evolutiona... 针对程序的分支覆盖测试,元启发式搜索技术已经被广泛应用于测试数据生成中。然而,当前的研究成果主要适用于串行程序。因此,为覆盖消息传递接口(Message Passing Interface,MPI)程序的分支,该文研究基于协同进化遗传算法(Co-evolutionary Genetic Algorithm,CGA)的测试套件生成方法(简称为:CGA生成法),该方法具有不受不可行分支影响的优势。首先,基于收集覆盖信息的探针,定义最小归一化分支距离,并以此设计出相应的适应度值函数;然后,使用CGA生成进化个体,并基于设计的适应度值函数,计算这些个体的适应值;最后,基于计算的适应值,选择子种群中代表个体,以构成合作种群。所提CGA生成法应用于7个基准MPI程序,并与其他多种方法进行比较。实验结果表明,CGA生成法的覆盖率通常高于其他搜索算法。 展开更多
关键词 消息传递接口程序 协同进化遗传算法 分支覆盖测试 测试套件生成 适应度值函数
下载PDF
遗传算法下的滑坡蠕滑位移预测模型研究 被引量:1
19
作者 冯谕 曾怀恩 涂鹏飞 《中国地质灾害与防治学报》 CSCD 2024年第1期82-91,共10页
滑坡位移预测是预报滑坡灾害的重要依据,以往的滑坡位移预测模型多数为时间序列预测模型、BP神经网络预测模型、Gaussian拟合预测模型以及其他一些非线性预测模型。这些滑坡位移预测模型在建立上缺乏力学理论支撑,对不同力学特性产生的... 滑坡位移预测是预报滑坡灾害的重要依据,以往的滑坡位移预测模型多数为时间序列预测模型、BP神经网络预测模型、Gaussian拟合预测模型以及其他一些非线性预测模型。这些滑坡位移预测模型在建立上缺乏力学理论支撑,对不同力学特性产生的滑坡位移预测分析上没有针对性。文章针对力学特性为重力蠕变型滑坡位移的预测,提出一种基于遗传优化算法的滑坡蠕滑位移非线性预测模型。以鲁家坡滑坡东侧J05监测点的累计水平位移为例,划定测试区域与预测区域进行模型预测分析,并将新模型预测结果与Gaussian拟合预测模型、BP神经网络预测模型预测结果进行对比分析。结果表明,相较于传统预测模型,新模型的预测效果有所提升,有一定的工程价值与实践价值。 展开更多
关键词 滑坡 变形预测 遗传算法 蠕滑位移 函数模型
下载PDF
基于遗传-模拟退火算法修正高斯烟羽模型参数 被引量:1
20
作者 王彦骄 张绍阳 +1 位作者 梁玉泉 马丹晨 《现代电子技术》 北大核心 2024年第6期9-14,共6页
高斯烟羽模型由于受到地形地貌与气象条件等因素的影响,难以准确反映大气的实际扩散过程。为解决上述问题,首先在经验参数作为先验值的基础上,通过遗传算法对实际观测数据进行参数反演修正,根据观测结果调整模型参数,提高模型的准确性;... 高斯烟羽模型由于受到地形地貌与气象条件等因素的影响,难以准确反映大气的实际扩散过程。为解决上述问题,首先在经验参数作为先验值的基础上,通过遗传算法对实际观测数据进行参数反演修正,根据观测结果调整模型参数,提高模型的准确性;然后,为进一步优化参数修正结果,引入模拟退火算法,通过随机搜索和逐步降温的策略来跳出遗传算法可能陷入的局部最优解,进一步改善模型的性能。为了评估修正效果,建立一个基于权重的模型值与观测值之间差异的适应度函数,通过比较修正前后的误差率来判断参数修正对高斯烟羽模型的影响程度。仿真实验的结果表明,所提出的遗传-模拟退火算法模型能够有效地修正高斯烟羽模型中的扩散参数,修正后的模型在预测污染物浓度方面的误差率下降了89.40%。所提模型可为环境保护和污染防治提供重要的理论支撑和决策依据,具有较大的应用潜力。 展开更多
关键词 高斯烟羽模型 遗传算法 模拟退火算法 参数修正 适应度函数 误差率
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部