The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to de...The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to deal with the problem of multi-targets data association separately. Based on the analysis of the limitation of chaos optimization and genetic algorithm, a new chaos genetic optimization combination algorithm was presented. This new algorithm first applied the "rough" search of chaos optimization to initialize the population of GA, then optimized the population by real-coded adaptive GA. In this way, GA can not only jump out of the "trap" of local optimal results easily but also increase the rate of convergence. And the new method can also avoid the complexity and time-consumed limitation of conventional way. The simulation results show that the combination algorithm can obtain higher correct association percent and the effect of association is obviously superior to chaos optimization or genetic algorithm separately. This method has better convergence property as well as time property than the conventional ones.展开更多
Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorit...Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association.展开更多
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system....Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.展开更多
Usually, only the Cramer-Rao lower bound (CRLB) of single target is taken into consideration in the state estimate of passive tracking systems. As for the case of multitarget, there are few works done due to its com...Usually, only the Cramer-Rao lower bound (CRLB) of single target is taken into consideration in the state estimate of passive tracking systems. As for the case of multitarget, there are few works done due to its complexity. The recursion formula of the posterior Cramer-Rao lower bound (PCRLB) in multitarget bearings-only tracking with the three kinds of data association is presented. Meanwhile, computer simulation is carried out for data association. The final result shows that the accuracy probability of data association has an important impact on the PCRLB.展开更多
Recently, lots of smoothing techniques have been presented for maneuvering target tracking. Interacting multiple model-probabilistic data association (IMM-PDA) fixed-lag smoothing algorithm provides an efficient sol...Recently, lots of smoothing techniques have been presented for maneuvering target tracking. Interacting multiple model-probabilistic data association (IMM-PDA) fixed-lag smoothing algorithm provides an efficient solution to track a maneuvering target in a cluttered environment. Whereas, the smoothing lag of each model in a model set is a fixed constant in traditional algorithms. A new approach is developed in this paper. Although this method is still based on IMM-PDA approach to a state augmented system, it adopts different smoothing lag according to diverse degrees of complexity of each model. As a result, the application is more flexible and the computational load is reduced greatly. Some simulations were conducted to track a highly maneuvering target in a cluttered environment using two sensors. The results illustrate the superiority of the proposed algorithm over comparative schemes, both in accuracy of track estimation and the computational load.展开更多
针对杂波环境下的多目标跟踪数据互联问题,该文提出基于全邻模糊聚类的联合概率数据互联算法(Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering,ANFCJPDA)。该算法根据确认区域中量测的分布和点...针对杂波环境下的多目标跟踪数据互联问题,该文提出基于全邻模糊聚类的联合概率数据互联算法(Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering,ANFCJPDA)。该算法根据确认区域中量测的分布和点迹-航迹关联规则构造统计距离,以各目标的预测位置为聚类中心,利用模糊聚类方法,计算相关波门内候选量测与不同目标互联的概率,通过概率加权融合对各目标状态与协方差进行更新。仿真分析表明,与经典的联合概率数据互联算法(Joint Probabilistic Data Association algorithm,JPDA)相比,ANFCJPDA较大程度地改善了算法的实时性,并且跟踪精度与JPDA相当。展开更多
文摘The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to deal with the problem of multi-targets data association separately. Based on the analysis of the limitation of chaos optimization and genetic algorithm, a new chaos genetic optimization combination algorithm was presented. This new algorithm first applied the "rough" search of chaos optimization to initialize the population of GA, then optimized the population by real-coded adaptive GA. In this way, GA can not only jump out of the "trap" of local optimal results easily but also increase the rate of convergence. And the new method can also avoid the complexity and time-consumed limitation of conventional way. The simulation results show that the combination algorithm can obtain higher correct association percent and the effect of association is obviously superior to chaos optimization or genetic algorithm separately. This method has better convergence property as well as time property than the conventional ones.
文摘Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association.
基金Supported by the National Natural Science Foundation of China(11078001)
文摘Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.
文摘Usually, only the Cramer-Rao lower bound (CRLB) of single target is taken into consideration in the state estimate of passive tracking systems. As for the case of multitarget, there are few works done due to its complexity. The recursion formula of the posterior Cramer-Rao lower bound (PCRLB) in multitarget bearings-only tracking with the three kinds of data association is presented. Meanwhile, computer simulation is carried out for data association. The final result shows that the accuracy probability of data association has an important impact on the PCRLB.
基金This work is supported by the Projects of the State Key Fundamental Research (No. 2001CB309403)
文摘Recently, lots of smoothing techniques have been presented for maneuvering target tracking. Interacting multiple model-probabilistic data association (IMM-PDA) fixed-lag smoothing algorithm provides an efficient solution to track a maneuvering target in a cluttered environment. Whereas, the smoothing lag of each model in a model set is a fixed constant in traditional algorithms. A new approach is developed in this paper. Although this method is still based on IMM-PDA approach to a state augmented system, it adopts different smoothing lag according to diverse degrees of complexity of each model. As a result, the application is more flexible and the computational load is reduced greatly. Some simulations were conducted to track a highly maneuvering target in a cluttered environment using two sensors. The results illustrate the superiority of the proposed algorithm over comparative schemes, both in accuracy of track estimation and the computational load.
文摘针对杂波环境下的多目标跟踪数据互联问题,该文提出基于全邻模糊聚类的联合概率数据互联算法(Joint Probabilistic Data Association algorithm based on All-Neighbor Fuzzy Clustering,ANFCJPDA)。该算法根据确认区域中量测的分布和点迹-航迹关联规则构造统计距离,以各目标的预测位置为聚类中心,利用模糊聚类方法,计算相关波门内候选量测与不同目标互联的概率,通过概率加权融合对各目标状态与协方差进行更新。仿真分析表明,与经典的联合概率数据互联算法(Joint Probabilistic Data Association algorithm,JPDA)相比,ANFCJPDA较大程度地改善了算法的实时性,并且跟踪精度与JPDA相当。