期刊文献+
共找到59,172篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction of Concrete Faced Rock Fill Dams Settlements Using Genetic Programming Algorithm 被引量:3
1
作者 Seyed Morteza Marandi Seyed Mahmood VaeziNejad Elyas Khavari 《International Journal of Geosciences》 2012年第3期601-609,共9页
In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries a... In the present study a Genetic Programing model (GP) proposed for the prediction of relative crest settlement of concrete faced rock fill dams. To this end information of 30 large dams constructed in seven countries across the world is gathered with their reported settlements. The results showed that the GP model is able to estimate the dam settlement properly based on four properties, void ratio of dam’s body (e), height (H), vertical deformation modulus (Ev) and shape factor (Sc) of the dam. For verification of the model applicability, obtained results compared with other research methods such as Clements’s formula and the finite element model. The comparison showed that in all cases the GP model led to be more accurate than those of performed in literature. Also a proper compatibility between the GP model and the finite element model was perceived. 展开更多
关键词 CONCRETE FACED Rock-Fill DAMS SETTLEMENT genetic programming algorithm Finite Element Model
下载PDF
Improved Genetic Programming Algorithm Applied to Symbolic Regression and Software Reliability Modeling
2
作者 Yongqiang ZHANG Huifang CHENG Ruilan YUAN 《Journal of Software Engineering and Applications》 2009年第5期354-360,共7页
The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and describes an improved genetic programming (IGP). The proposed method can be described as follows: t... The present study aims at improving the ability of the canonical genetic programming algorithm to solve problems, and describes an improved genetic programming (IGP). The proposed method can be described as follows: the first inves-tigates initializing population, the second investigates reproduction operator, the third investigates crossover operator, and the fourth investigates mutation operation. The IGP is examined in two domains and the results suggest that the IGP is more effective and more efficient than the canonical one applied in different domains. 展开更多
关键词 IMPROVED genetic programming SYMBOLIC Regression SOFTWARE Reliability Model
下载PDF
Three-Objective Programming with Continuous Variable Genetic Algorithm
3
作者 Adugna Fita 《Applied Mathematics》 2014年第21期3297-3310,共14页
The subject area of multiobjective optimization deals with the investigation of optimization problems that possess more than one objective function. Usually, there does not exist a single solution that optimizes all f... The subject area of multiobjective optimization deals with the investigation of optimization problems that possess more than one objective function. Usually, there does not exist a single solution that optimizes all functions simultaneously;quite the contrary, we have solution set that is called nondominated set and elements of this set are usually infinite. It is from this set decision made by taking elements of nondominated set as alternatives, which is given by analysts. Since it is important for the decision maker to obtain as much information as possible about this set, our research objective is to determine a well-defined and meaningful approximation of the solution set for linear and nonlinear three objective optimization problems. In this paper a continuous variable genetic algorithm is used to find approximate near optimal solution set. Objective functions are considered as fitness function without modification. Initial solution was generated within box constraint and solutions will be kept in feasible region during mutation and recombination. 展开更多
关键词 CHROMOSOME CROSSOVER HEURISTICS Mutation Optimization Population Ranking genetic algorithms Multi-Objective PARETO Optimal Solutions PARENT Selection
下载PDF
An Innovative Genetic Algorithms-Based Inexact Non-Linear Programming Problem Solving Method
4
作者 Weihua Jin Zhiying Hu Christine Chan 《Journal of Environmental Protection》 2017年第3期231-249,共19页
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor... In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty. 展开更多
关键词 genetic algorithms INEXACT NON-LINEAR programming (INLP) ECONOMY of Scale Numeric Optimization Solid Waste Management
下载PDF
An Enhanced Genetic Programming Algorithm for Optimal Controller Design
5
作者 Rami A. Maher Mohamed J. Mohamed 《Intelligent Control and Automation》 2013年第1期94-101,共8页
This paper proposes a Genetic Programming based algorithm that can be used to design optimal controllers. The proposed algorithm will be named a Multiple Basis Function Genetic Programming (MBFGP). Herein, the main id... This paper proposes a Genetic Programming based algorithm that can be used to design optimal controllers. The proposed algorithm will be named a Multiple Basis Function Genetic Programming (MBFGP). Herein, the main ideas concerning the initial population, the tree structure, genetic operations, and other proposed non-genetic operations are discussed in details. An optimization algorithm called numeric constant mutation is embedded to strengthen the search for the optimal solutions. The results of solving the optimal control for linear as well as nonlinear systems show the feasibility and effectiveness of the proposed MBFGP as compared to the optimal solutions which are based on numerical methods. Furthermore, this algorithm enriches the set of suboptimal state feedback controllers to include controllers that have product time-state terms. 展开更多
关键词 genetic programming OPTIMAL CONTROL Nonlinear CONTROL System
下载PDF
Modeling and Adaptive Self-Tuning MVC Control of PAM Manipulator Using Online Observer Optimized with Modified Genetic Algorithm
6
作者 Ho Pham Huy Anh Nguyen Thanh Nam 《Engineering(科研)》 2011年第2期130-143,共14页
In this paper, the application of modified genetic algorithms (MGA) in the optimization of the ARX Model-based observer of the Pneumatic Artificial Muscle (PAM) manipulator is investigated. The new MGA algorithm is pr... In this paper, the application of modified genetic algorithms (MGA) in the optimization of the ARX Model-based observer of the Pneumatic Artificial Muscle (PAM) manipulator is investigated. The new MGA algorithm is proposed from the genetic algorithm with important additional strategies, and consequently yields a faster convergence and a more accurate search. Firstly, MGA-based identification method is used to identify the parameters of the nonlinear PAM manipulator described by an ARX model in the presence of white noise and this result will be validated by MGA and compared with the simple genetic algorithm (GA) and LMS (Least mean-squares) method. Secondly, the intrinsic features of the hysteresis as well as other nonlinear disturbances existing intuitively in the PAM system are estimated online by a Modified Recursive Least Square (MRLS) method in identification experiment. Finally, a highly efficient self-tuning control algorithm Minimum Variance Control (MVC) is taken for tracking the joint angle position trajectory of this PAM manipulator. Experiment results are included to demonstrate the excellent performance of the MGA algorithm in the NARX model-based MVC control system of the PAM system. These results can be applied to model, identify and control other highly nonlinear systems as well. 展开更多
关键词 Modified genetic algorithm (MGA) ONLINE System Identification ARX Model Pneumatic Artificial Muscle (PAM) PAM MANIPULATOR Minimum Variance Controller (MVC)
下载PDF
New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications
7
作者 Shimaa M.Amer Ashraf A.M.Khalaf +3 位作者 Amr H.Hussein Salman A.Alqahtani Mostafa H.Dahshan Hossam M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2749-2767,共19页
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t... Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL. 展开更多
关键词 Array synthesis convolution process genetic algorithm(GA) half power beamwidth(HPBW) linear antenna array(LAA) side lobe level(SLL) quality of service(QOS)
下载PDF
A Time-Dependent Vehicle Routing Problem with Time Windows for E-Commerce Supplier Site Pickups Using Genetic Algorithm 被引量:3
8
作者 Suresh Nanda Kumar Ramasamy Panneerselvam 《Intelligent Information Management》 2015年第4期181-194,共14页
The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To ge... The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used. 展开更多
关键词 Vehicle Routing Problem EXACT Methods HEURISTICS Metaheuristics VRPTW TDVRPTW Optimization genetic algorithms Matlab HeuristicLab C# DOT NET
下载PDF
Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm 被引量:2
9
作者 Abdrahamane Traoré Hatem Elgothamy Mohamed A. Zohdy 《Journal of Power and Energy Engineering》 2018年第5期64-77,共14页
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e... This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods. 展开更多
关键词 Optimization OFF-GRID Microgrid Renewable ENERGY ENERGY Storage Systems (ESS) SOLAR Photovoltaic (PV) WIND Battery HYBRID genetic algorithm (GA)
下载PDF
Linear-in-Parameter Models Based on Parsimonious Genetic Programming Algorithm and Its Application to Aero-Engine Start Modeling 被引量:3
10
作者 李应红 尉询楷 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期295-303,共9页
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditio... A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM. 展开更多
关键词 aerospace propulsion system linear-in-parameter nonlinear model Parsimonious genetic programming PGP aero-engine dynamic start model
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
11
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
12
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
下载PDF
Modeling of Canonical Switching Cell Converter Using Genetic Algorithm
13
作者 T.V.Viknesh V.Manikandan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2017年第1期109-116,共8页
The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirc... The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws.The state space matrices were used to construct the transfer functions of ON&OFF states.The step response of the converter was simulated using MATLAB.The step response curve was obtained using different values of circuit components(L,C1,C2 and RL)and optimized.The characteristic parameters such as rise time,overshoot,settling time,steady state error and stability were determined using the step response curve.The response curve shows that there is no overshoot;the rise time and settling time are very low as expected for a converter and its stability is very high but the amplitude is very.The circuit was tuned to attain the expected amplitude using PID controller with the help of Genetic algorithm.The excellent results of circuits’characteristic parameters are very useful guideline for constructing such CSC converters for DC-DC conversions.The circuit characteristic parameters are useful in constructing such CSC converters for DCDC conversions in driving solar energy using solar panel. 展开更多
关键词 CANONICAL SWITCHING CELL CONVERTER STATE-SPACE methods DC-DC CONVERTER step response stability power system modeling SWITCHING circuits genetic algorithm PID
下载PDF
Optimization of QoS Parameters in Cognitive Radio Using Combination of Two Crossover Methods in Genetic Algorithm
14
作者 Abdelfatah Elarfaoui Noureddine Elalami 《International Journal of Communications, Network and System Sciences》 2013年第11期478-483,共6页
Radio Cognitive (RC) is the new concept introduced to improve spectrum utilization in wireless communication and present important research field to resolve the spectrum scarcity problem. The powerful ability of CR to... Radio Cognitive (RC) is the new concept introduced to improve spectrum utilization in wireless communication and present important research field to resolve the spectrum scarcity problem. The powerful ability of CR to change and adapt its transmit parameters according to environmental sensed parameters, makes CR as the leading technology to manage spectrum allocation and respond to QoS provisioning. In this paper, we assume that the radio environment has been sensed and that the SU specifies QoS requirements of the wireless application. We use genetic algorithm (GA) and propose crossover method called Combined Single-Heuristic Crossover. The weighted sum multi-objective approach is used to combine performance objectives functions discussed in this paper and BER approximate formula is considered. 展开更多
关键词 Cognitive Radio genetic algorithm SPECTRUM Allocation DECISION-MAKING SPECTRUM Management Quality of Service (QoS) MULTI-OBJECTIVE Weighted SUM Approach Heuristic-Crossover
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
15
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION Particle Swarm INTELLIGENCE (PSO) Ant Colony OPTIMIZATION (ACO) genetic algorithm (GA)
下载PDF
Rapid Prototype Development Approach for Genetic Programming
16
作者 Pei He Lei Zhang 《Journal of Computer and Communications》 2024年第2期67-79,共13页
Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of ... Genetic Programming (GP) is an important approach to deal with complex problem analysis and modeling, and has been applied in a wide range of areas. The development of GP involves various aspects, including design of genetic operators, evolutionary controls and implementations of heuristic strategy, evaluations and other mechanisms. When designing genetic operators, it is necessary to consider the possible limitations of encoding methods of individuals. And when selecting evolutionary control strategies, it is also necessary to balance search efficiency and diversity based on representation characteristics as well as the problem itself. More importantly, all of these matters, among others, have to be implemented through tedious coding work. Therefore, GP development is both complex and time-consuming. To overcome some of these difficulties that hinder the enhancement of GP development efficiency, we explore the feasibility of mutual assistance among GP variants, and then propose a rapid GP prototyping development method based on πGrammatical Evolution (πGE). It is demonstrated through regression analysis experiments that not only is this method beneficial for the GP developers to get rid of some tedious implementations, but also enables them to concentrate on the essence of the referred problem, such as individual representation, decoding means and evaluation. Additionally, it provides new insights into the roles of individual delineations in phenotypes and semantic research of individuals. 展开更多
关键词 genetic programming Grammatical Evolution Gene Expression programming Regression Analysis Mathematical Modeling Rapid Prototype Development
下载PDF
Optimization of Processing Parameters of Power Spinning for Bushing Based on Neural Network and Genetic Algorithms 被引量:3
17
作者 Junsheng Zhao Yuantong Gu Zhigang Feng 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期606-616,共11页
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o... A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications. 展开更多
关键词 power SPINNING process parameters optimization BP NEURAL network genetic algorithms (GA) response surface methodology (RSM)
下载PDF
A Genetic Algorithm-Based Smart Antenna Technique for Anti-Collision of Multiple SAW ID-Tags
18
作者 朱华 韩韬 +1 位作者 吉小军 施文康 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第4期501-507,共7页
In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals w... In the radio frequency identification (RFID) system based on surface acoustic wave (SAW) technique, some tags often locate in the field of a transceiver at the same time. These tags produce simultaneous echo signals which "collide" when they arrive back at the transceiver, which leads to difficult identification. In this paper, smart antenna technique is presented to implement anti-collision in SAW RFID system. The direction of arrivals (DOAs) are used to denote the locations of tags, and genetic algorithm (GA) is suggested to find the optimal estimates of the DOAs in complex multimodal search spaces. Once the DOAs are obtained, the array weights are formed and the signals of tags are recovered to implement decoding. The experimental results show that the GA-based smart antenna technique works well in some occasions. 展开更多
关键词 surface aconstic wave (SAW) tags radio frequency identification (RFID) smart antenna direction of arrival(DOA) genetic algorithm
下载PDF
Analytical Solution for the Time-Dependent Emden-Fowler Type of Equations by Homotopy Analysis Method with Genetic Algorithm
19
作者 Waleed Al-Hayani Laheeb Alzubaidy Ahmed Entesar 《Applied Mathematics》 2017年第5期693-711,共19页
In this paper, Homotopy Analysis method with Genetic Algorithm is presented and used to obtain an analytical solution for the time-dependent Emden-Fowler type of equations and wave-type equation with singular behavior... In this paper, Homotopy Analysis method with Genetic Algorithm is presented and used to obtain an analytical solution for the time-dependent Emden-Fowler type of equations and wave-type equation with singular behavior at x = 0. The advantage of this single global method employed to present a reliable framework is utilized to overcome the singularity behavior at the point x = 0 for both models. The method is demonstrated for a variety of problems in one and higher dimensional spaces where approximate-exact solutions are obtained. The results obtained in all cases show the reliability and the efficiency of this method. 展开更多
关键词 HOMOTOPY Analysis Method genetic algorithm EMDEN-FOWLER EQUATION Wave-Type EQUATION Adomian Polynomials Noise Terms Padé APPROXIMANTS SIMPSON Rule
下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
20
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部