期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Crop Resources Ethic in Plant Genetic Engineering and Fortune Transfer Between Generations 被引量:1
1
作者 WANG Xiaowei DING Guangzhou LIANG Xueqing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2006年第2期169-173,共5页
The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable ... The relation between human and crop resources belongs to the ethic of resources exploitation. The purposes of discussing the ethic of crop resources are to protect the ecology and safety of crops, to gain sustainable development, furthermore, to choose and form the production structure that is favorable to saving crop resources and protecting the ecology of crops. Plant genetic engineering is the technology of molecule breeding of rearrangement of inheritance materials at the level of molecule directionally, of improving plant properties and of breeding high quality and yield varieties of crops. The prominent effects of the technology on the crop ecological system are human subjective factors increasing as well as violating the nature and intensifying the conflict between human being and nature. Therefore, in plant genetic engineering, crop resources exploitation should follow certain ethic principles. Under the theory of ethics of natural resources, by the means of biologinal-statistics, the author systematically analyzed the possible model of crop resources transfer between generations as well as the transfer mode of magnitude of real materials and magnitude of value. 展开更多
关键词 plant genetic engineering crop resources ETHIC fortune transfer between generations
下载PDF
A novel constitutive promoter and its downstream 5′ UTR derived from cotton(Gossypium spp.) drive high-level gene expression in stem and leaf tissues
2
作者 SUN Bao SUN Guo-qing +2 位作者 MENG Zhi-gang ZHANG Rui GUO San-dui 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期755-762,共8页
The development of genetically modified crops requires new promoters and regulatory regions to achieve high gene ex- pression and/or tissue-specific expression patterns in plants. To obtain promoter sequences of plant... The development of genetically modified crops requires new promoters and regulatory regions to achieve high gene ex- pression and/or tissue-specific expression patterns in plants. To obtain promoter sequences of plants with new properties, we analyzed the expression traits of the cotton (Gossypium hirsutum) translation elongation factor 1A gene family. The results showed that the GhEF1A8 gene is highly expressed in different organs of cotton plants, and showed much higher transcript levels in stems and leaves. Its promoter (GhEFIA1.7) and the 5" untranslated region (5" UTR), comprising a regulatory region named PGhEFIA8, were isolated from cotton and studied in stably transformed tobacco plants. The regulatory region sequences were fused to the 13-glucuronidase (GUS) reporter gene to characterize its expression pattern in tobacco. Histochemical and fiuorometric GUS activity assays demonstrated that PGhEF1A8 could direct GUS gene expression in all tissues and organs in transgenic tobacco, including leaves, stems, flowers, and roots. The level of GUS activity in the leaves and stems was significantly higher than in cauliflower mosaic virus (CaMV) 35S promoter::GUS plants, but as same as CaMV 35S promoter::GUS plants in flower and root tissues. GUS expression levels decreased 2-10-fold when the 5" UTR was absent from PGhEF1A8. Deletion analysis of the PGhEFIA8 sequence showed that the region -647 to -323 might possess negative elements that repress transgene expression in tobacco plants. The results suggested that the GhEFIA8 regulation region may represent a practical choice to direct high-level constitutive expression of transgenes and could be a valuable new tool in plant genetic engineering. 展开更多
关键词 Gossypium hirsutum plant genetic engineering qPCR promoter 5" untranslated region histochemistry fluorometry GUS
下载PDF
Hairy Root and Its Application in Plant Genetic Engineering 被引量:18
3
作者 Zhi-Bi Hu Min Du 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2006年第2期121-127,共7页
Agrobacterium rhizogenes Conn. causes hairy root disease In plants. Hairy root-Infected A. rhizogenes Is characterlzed by a high growth rate and genetic stability. Hairy root cultures have been proven to be an efficie... Agrobacterium rhizogenes Conn. causes hairy root disease In plants. Hairy root-Infected A. rhizogenes Is characterlzed by a high growth rate and genetic stability. Hairy root cultures have been proven to be an efficient means of producing secondary metabolites that are normally biosyntheslzed In roots of differentiated plants. Furthermore, a transgenlc root system offers tremendous potential for introducing additional genes along with the RI plasmld, especially with modified genes, into medicinal plant cells with A. rhizogenes vector systems. The cultures have turned out to be a valuable tool with which to study the biochemical properties and the gene expression profile of metabolic pathways. Moreover, the cultures can be used to elucidate the Intermediates and key enzymes Involved In the biosynthesis of secondary metabolites. The present article discusses various appllcations of hairy root cultures in plant genetic engineering and potential problems aseoclsted with them. 展开更多
关键词 Agrobacterium rhizogenes hairy root plant genetic engineering Ri plasmid secondary metabolites.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部