Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP...Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.展开更多
The commercial cultivation of genetically modified(GM)crops has eased the global food crisis and brought considerable economic and social benefits to countries.Because of the potential safety problems,it is necessary ...The commercial cultivation of genetically modified(GM)crops has eased the global food crisis and brought considerable economic and social benefits to countries.Because of the potential safety problems,it is necessary to make clear the molecular genetic characteristics,edible safety,planting,processing,and other aspects of the safety evaluation of GM crops.The safety problems existing in the cultivation of GM crops,safety evaluation and detection of GM crops were introduced in this paper,which provided the basis for safety evaluation and effective supervision of GM crops and their products.Commercial cultivation and reasonable supervision based on safety evaluation have far-reaching significance for ensuring consumer safety,enhancing the credibility of the national political system and enhancing citizens'confidence in the safety of GM crop products for consumption.展开更多
Although, genetically engineered products (GM) have to be a broadly debated topic in different countries, there has been much less attention devoted to farmers' attitudes towards GM crops. This paper attempts to re...Although, genetically engineered products (GM) have to be a broadly debated topic in different countries, there has been much less attention devoted to farmers' attitudes towards GM crops. This paper attempts to research farmers' insights on GM crops in Georgia through February-March 2014. An in-depth survey of 611 farmers revealed that respondents lack sufficient knowledge about genetic engineering. They tend to have a negative attitude towards GM crops and are strongly against of import and adoption of GM seeds. An empirical examination based on analysis of variance and Pearson's correlation coefficient verified that both education and age were significant determinants of awareness of farmers about genetically engineered crops, while income used to have no significant influence on the farmers' decision to adopt GM crops. In addition, relationship between awareness about genetic engineering and farmers' decision to adopt GM crops has to be insignificant, as well.展开更多
Genetically Modified Crops (GMCs) and Climate Change (CC) are the two most contentious ecological issues the world faces today. Application of transgenics in agriculture is most debated because of its direct and indir...Genetically Modified Crops (GMCs) and Climate Change (CC) are the two most contentious ecological issues the world faces today. Application of transgenics in agriculture is most debated because of its direct and indirect implications. The advertized benefits in the backdrop of the potentially harmful effects on health and environment make this an issue of greater concern. On the other hand, Climate Change is a problem of enormous scale and its after-effects even more grave. The impact of climate change on agriculture, though well researched, is still very uncertain. Further, the introduction and global embrace of a technology with unverified credentials may prove to be an ill-conceived and ill-timed act. The future of GMC technology in India will be both challenging as well as exciting. Therefore any decision on this front should be taken with scientific rigor and logic. Our aim is to explore this complex inter-relationship and provide impetus for further research.展开更多
The production of foods with genetically modified organisms (GMOs) has risen rapidly over the past three decades to comprise nearly 90% of crops grown in the United States today. Currently, there are no mandates for l...The production of foods with genetically modified organisms (GMOs) has risen rapidly over the past three decades to comprise nearly 90% of crops grown in the United States today. Currently, there are no mandates for labeling foods containing GMOs. GMO agricultural crops contain the insertion of genes encoding for pesticides, pesticide resistance, growth factors, or other substances not normally present. In addition to the foreign genes that are inserted, hundreds to thousands of mutations disrupt normal genes in GMO plants. Recently, animal studies have demonstrated toxicity of GMO foods causing organ failure, infertility, carcinomas and death. The FDA requirement of ingredients added to foods be labeled on the product is not applied to GMO foods, precluding the consumer’s right to know. GMOs provide an economic incentive to companies because the seeds can be patented, driving up costs and creating the potential for monopolies. Herbicide-resistance conferred by GMOs has resulted in higher pesticide applications, which correlate with higher human cancer rates, and the emergence of pesticide-resistant weeds and insects. GMO toxins are spreading into to non-target insects, waterways and aquatic organisms, with toxicity to non-target organisms and resultant contamination of disparate ecosystems in the food chain. The appropriateness of mandatory GMO labeling of foods in the United States is discussed.展开更多
In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM ric...In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM rice. And the identification of GM rice is of great significance. Therefore, in the present study, the po- tential problems in the identification of GM rice with PCR were analyzed both at a technical level and from a theoretical perspective. In addition, PCR detection on the transgenic elements: promoter, terminator, internal reference gene and target gene was discussed, respectively. The possible solutions were proposed based on the principles of plant virology and genetic engineering.展开更多
Ability to modify plants at the genomic level by advanced molecular technology has enhanced the scope of improvements in plant traits attempted earlier through conventional breeding methods. Techniques such as genetic...Ability to modify plants at the genomic level by advanced molecular technology has enhanced the scope of improvements in plant traits attempted earlier through conventional breeding methods. Techniques such as genetic transformation have opened new vistas whereby functional genes, not commonly present in a particular species can be added from other species. The traits incorporated into the genetically engineered plants in the beginning were confined to those governed by dominant genes, e.g. insecticide resistance and herbicide tolerance but advancements with time now also permit the transfer of complexly inherited traits such as drought and cold tolerance. Transgenic technology is also useful in understanding gene expression and metabolic pathways which can then be used to harness the full genomic potential of the plant. This review presents a narrative on development of transgenics and their use for the improvement of field, industrial and pharmaceuticals crops. In addition, discussions are made on current status on genetically modified crops, hurdles to genetic engineering, overcoming strategies and future scope.展开更多
In order to accurately identify the first and second generations of epsps genetically modified(GM) soybeans and related products,a broad spectrum identification approach was established using the real time Polymerase ...In order to accurately identify the first and second generations of epsps genetically modified(GM) soybeans and related products,a broad spectrum identification approach was established using the real time Polymerase Chain Reaction(PCR) principle according to the homology of epsps genes of the first and second generations of GM soybeans.A pair of primer and probe was designed to simultaneously identify exogenous gene epsps of two generations of GM soybeans.Besides,evaluation was carried out on this approach from the accuracy,specificity,sensitivity and reproducibility.The experimental results indicated that(ⅰ) although there is certain difference in epsps gene sequence between the first and second generations of epsps genetically modified(GM) soybeans,the established approach can simultaneously detect the epsps genes of the bean curd using two generations of soybean as raw materials;(ⅱ) in the accuracy and specificity experiment,only cp4-epsps genes of two generations of GM soybeans were detected,so this approach has high specificity and accuracy;(ⅲ) in the experiment of 5 copies of epsps genes of 40 repeated identification reaction systems,5 copies of epsps genes can be detected each time,therefore at 100% confidence level,this approach can identify 5 copies of epsps genes,showing that this approach has high sensitivity and reproducibility.展开更多
Transgene escape could lead to genetically modified rice establishing wild populations in the natural environment and competing for survival space with weeds.However,whether the expression of the Bacillus thuringiensi...Transgene escape could lead to genetically modified rice establishing wild populations in the natural environment and competing for survival space with weeds.However,whether the expression of the Bacillus thuringiensis(Bt)gene in rice will alter the relationship between transgene plants and weeds and induce undesirable environmental consequences are poorly understood.Thus,field experiments were conducted to investigate the weed competitiveness and assess the ecological risk of transgenic Bt rice under herbicide-free and lepidopterous pest-controlled environments.Results showed that weed–rice competition in the direct-sowing(DS)field was earlier and more severe than that in the transplanting(TP)field,which resulted in a significant decrease in biomass and yield in DS.However,conventional Bt and non-Bt rice yield was not significantly different.The weed number,weed coverage ratio,and weed diversity of conventional Bt rice were significantly higher than those of non-Bt rice at the early growth and mature stages,especially in DS plots,suggesting that Bt traits did not increase the weed competitiveness of transgenic rice and had no negative effect on weed diversity.Grain yield and weed number varied between different hybrid rice lines,but those differences were insignificant between Bt and non-Bt rice.The number of insects increased with the increase of weeds in hybrid rice plots,whereas the insect number and diversity did not display a significant difference between Bt and non-Bt rice.Therefore,the ecological risk of transgenic Bt rice is comparable to non-Bt rice.展开更多
基金supported by the Scientific and Innovative Action Plan of Shanghai(21N31900800)Shanghai Rising-Star Program(23QB1403500)+4 种基金the Shanghai Sailing Program(20YF1443000)Shanghai Science and Technology Commission,the Belt and Road Project(20310750500)Talent Project of SAAS(2023-2025)Runup Plan of SAAS(ZP22211)the SAAS Program for Excellent Research Team(2022(B-16))。
文摘Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.
基金Supported by the China Postdoctoral Science Foundation(2023M730312)the Science and Technology Plan Projects of the State Administration for Market Regulation(2022MK002)the National Key Research and Development Program(2022YFF0606105)。
文摘The commercial cultivation of genetically modified(GM)crops has eased the global food crisis and brought considerable economic and social benefits to countries.Because of the potential safety problems,it is necessary to make clear the molecular genetic characteristics,edible safety,planting,processing,and other aspects of the safety evaluation of GM crops.The safety problems existing in the cultivation of GM crops,safety evaluation and detection of GM crops were introduced in this paper,which provided the basis for safety evaluation and effective supervision of GM crops and their products.Commercial cultivation and reasonable supervision based on safety evaluation have far-reaching significance for ensuring consumer safety,enhancing the credibility of the national political system and enhancing citizens'confidence in the safety of GM crop products for consumption.
文摘Although, genetically engineered products (GM) have to be a broadly debated topic in different countries, there has been much less attention devoted to farmers' attitudes towards GM crops. This paper attempts to research farmers' insights on GM crops in Georgia through February-March 2014. An in-depth survey of 611 farmers revealed that respondents lack sufficient knowledge about genetic engineering. They tend to have a negative attitude towards GM crops and are strongly against of import and adoption of GM seeds. An empirical examination based on analysis of variance and Pearson's correlation coefficient verified that both education and age were significant determinants of awareness of farmers about genetically engineered crops, while income used to have no significant influence on the farmers' decision to adopt GM crops. In addition, relationship between awareness about genetic engineering and farmers' decision to adopt GM crops has to be insignificant, as well.
文摘Genetically Modified Crops (GMCs) and Climate Change (CC) are the two most contentious ecological issues the world faces today. Application of transgenics in agriculture is most debated because of its direct and indirect implications. The advertized benefits in the backdrop of the potentially harmful effects on health and environment make this an issue of greater concern. On the other hand, Climate Change is a problem of enormous scale and its after-effects even more grave. The impact of climate change on agriculture, though well researched, is still very uncertain. Further, the introduction and global embrace of a technology with unverified credentials may prove to be an ill-conceived and ill-timed act. The future of GMC technology in India will be both challenging as well as exciting. Therefore any decision on this front should be taken with scientific rigor and logic. Our aim is to explore this complex inter-relationship and provide impetus for further research.
文摘The production of foods with genetically modified organisms (GMOs) has risen rapidly over the past three decades to comprise nearly 90% of crops grown in the United States today. Currently, there are no mandates for labeling foods containing GMOs. GMO agricultural crops contain the insertion of genes encoding for pesticides, pesticide resistance, growth factors, or other substances not normally present. In addition to the foreign genes that are inserted, hundreds to thousands of mutations disrupt normal genes in GMO plants. Recently, animal studies have demonstrated toxicity of GMO foods causing organ failure, infertility, carcinomas and death. The FDA requirement of ingredients added to foods be labeled on the product is not applied to GMO foods, precluding the consumer’s right to know. GMOs provide an economic incentive to companies because the seeds can be patented, driving up costs and creating the potential for monopolies. Herbicide-resistance conferred by GMOs has resulted in higher pesticide applications, which correlate with higher human cancer rates, and the emergence of pesticide-resistant weeds and insects. GMO toxins are spreading into to non-target insects, waterways and aquatic organisms, with toxicity to non-target organisms and resultant contamination of disparate ecosystems in the food chain. The appropriateness of mandatory GMO labeling of foods in the United States is discussed.
基金Supported by Key Special Project for Breeding and Cultivation of GMO Varieties(2011ZX08001-001,2014ZX0800101B)Special Fund from the Department of Finance of Hubei Province(2011-2015)Collaborative Breeding Project for Rice(2013-2017)
文摘In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM rice. And the identification of GM rice is of great significance. Therefore, in the present study, the po- tential problems in the identification of GM rice with PCR were analyzed both at a technical level and from a theoretical perspective. In addition, PCR detection on the transgenic elements: promoter, terminator, internal reference gene and target gene was discussed, respectively. The possible solutions were proposed based on the principles of plant virology and genetic engineering.
文摘Ability to modify plants at the genomic level by advanced molecular technology has enhanced the scope of improvements in plant traits attempted earlier through conventional breeding methods. Techniques such as genetic transformation have opened new vistas whereby functional genes, not commonly present in a particular species can be added from other species. The traits incorporated into the genetically engineered plants in the beginning were confined to those governed by dominant genes, e.g. insecticide resistance and herbicide tolerance but advancements with time now also permit the transfer of complexly inherited traits such as drought and cold tolerance. Transgenic technology is also useful in understanding gene expression and metabolic pathways which can then be used to harness the full genomic potential of the plant. This review presents a narrative on development of transgenics and their use for the improvement of field, industrial and pharmaceuticals crops. In addition, discussions are made on current status on genetically modified crops, hurdles to genetic engineering, overcoming strategies and future scope.
基金Supported by Project for Promotion of Financial Innovation Ability of Sichuan Province(2016GXTZ-010)Dongrun-Yau Science Award(Biology,2016)
文摘In order to accurately identify the first and second generations of epsps genetically modified(GM) soybeans and related products,a broad spectrum identification approach was established using the real time Polymerase Chain Reaction(PCR) principle according to the homology of epsps genes of the first and second generations of GM soybeans.A pair of primer and probe was designed to simultaneously identify exogenous gene epsps of two generations of GM soybeans.Besides,evaluation was carried out on this approach from the accuracy,specificity,sensitivity and reproducibility.The experimental results indicated that(ⅰ) although there is certain difference in epsps gene sequence between the first and second generations of epsps genetically modified(GM) soybeans,the established approach can simultaneously detect the epsps genes of the bean curd using two generations of soybean as raw materials;(ⅱ) in the accuracy and specificity experiment,only cp4-epsps genes of two generations of GM soybeans were detected,so this approach has high specificity and accuracy;(ⅲ) in the experiment of 5 copies of epsps genes of 40 repeated identification reaction systems,5 copies of epsps genes can be detected each time,therefore at 100% confidence level,this approach can identify 5 copies of epsps genes,showing that this approach has high sensitivity and reproducibility.
基金funded by the National Program of Transgenic Variety Development of China(2016ZX08001001)。
文摘Transgene escape could lead to genetically modified rice establishing wild populations in the natural environment and competing for survival space with weeds.However,whether the expression of the Bacillus thuringiensis(Bt)gene in rice will alter the relationship between transgene plants and weeds and induce undesirable environmental consequences are poorly understood.Thus,field experiments were conducted to investigate the weed competitiveness and assess the ecological risk of transgenic Bt rice under herbicide-free and lepidopterous pest-controlled environments.Results showed that weed–rice competition in the direct-sowing(DS)field was earlier and more severe than that in the transplanting(TP)field,which resulted in a significant decrease in biomass and yield in DS.However,conventional Bt and non-Bt rice yield was not significantly different.The weed number,weed coverage ratio,and weed diversity of conventional Bt rice were significantly higher than those of non-Bt rice at the early growth and mature stages,especially in DS plots,suggesting that Bt traits did not increase the weed competitiveness of transgenic rice and had no negative effect on weed diversity.Grain yield and weed number varied between different hybrid rice lines,but those differences were insignificant between Bt and non-Bt rice.The number of insects increased with the increase of weeds in hybrid rice plots,whereas the insect number and diversity did not display a significant difference between Bt and non-Bt rice.Therefore,the ecological risk of transgenic Bt rice is comparable to non-Bt rice.