In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM ric...In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM rice. And the identification of GM rice is of great significance. Therefore, in the present study, the po- tential problems in the identification of GM rice with PCR were analyzed both at a technical level and from a theoretical perspective. In addition, PCR detection on the transgenic elements: promoter, terminator, internal reference gene and target gene was discussed, respectively. The possible solutions were proposed based on the principles of plant virology and genetic engineering.展开更多
Ability to modify plants at the genomic level by advanced molecular technology has enhanced the scope of improvements in plant traits attempted earlier through conventional breeding methods. Techniques such as genetic...Ability to modify plants at the genomic level by advanced molecular technology has enhanced the scope of improvements in plant traits attempted earlier through conventional breeding methods. Techniques such as genetic transformation have opened new vistas whereby functional genes, not commonly present in a particular species can be added from other species. The traits incorporated into the genetically engineered plants in the beginning were confined to those governed by dominant genes, e.g. insecticide resistance and herbicide tolerance but advancements with time now also permit the transfer of complexly inherited traits such as drought and cold tolerance. Transgenic technology is also useful in understanding gene expression and metabolic pathways which can then be used to harness the full genomic potential of the plant. This review presents a narrative on development of transgenics and their use for the improvement of field, industrial and pharmaceuticals crops. In addition, discussions are made on current status on genetically modified crops, hurdles to genetic engineering, overcoming strategies and future scope.展开更多
基金Supported by Key Special Project for Breeding and Cultivation of GMO Varieties(2011ZX08001-001,2014ZX0800101B)Special Fund from the Department of Finance of Hubei Province(2011-2015)Collaborative Breeding Project for Rice(2013-2017)
文摘In recent years, food security and safety have attracted increasing attention due to the worldwide research and development of genetically modified (GM) rice, and the controversy over the commercialization of GM rice. And the identification of GM rice is of great significance. Therefore, in the present study, the po- tential problems in the identification of GM rice with PCR were analyzed both at a technical level and from a theoretical perspective. In addition, PCR detection on the transgenic elements: promoter, terminator, internal reference gene and target gene was discussed, respectively. The possible solutions were proposed based on the principles of plant virology and genetic engineering.
文摘Ability to modify plants at the genomic level by advanced molecular technology has enhanced the scope of improvements in plant traits attempted earlier through conventional breeding methods. Techniques such as genetic transformation have opened new vistas whereby functional genes, not commonly present in a particular species can be added from other species. The traits incorporated into the genetically engineered plants in the beginning were confined to those governed by dominant genes, e.g. insecticide resistance and herbicide tolerance but advancements with time now also permit the transfer of complexly inherited traits such as drought and cold tolerance. Transgenic technology is also useful in understanding gene expression and metabolic pathways which can then be used to harness the full genomic potential of the plant. This review presents a narrative on development of transgenics and their use for the improvement of field, industrial and pharmaceuticals crops. In addition, discussions are made on current status on genetically modified crops, hurdles to genetic engineering, overcoming strategies and future scope.