Rapeseed(Brassica napus,AACC)was formed by hybridization between progenitor species Brassica rapa(AA)and Brassica oleracea(CC).As a result of a limited number of hybridization events between specific progenitor genoty...Rapeseed(Brassica napus,AACC)was formed by hybridization between progenitor species Brassica rapa(AA)and Brassica oleracea(CC).As a result of a limited number of hybridization events between specific progenitor genotypes and strong breeding selection for oil quality traits,rapeseed has limited genetic diversity.The production of resynthesized B.napus lines via interspecific hybridization of the diploid progenitor species B.rapa and B.oleracea is one possible way to increase genetic variation in rapeseed.However,most resynthesized lines produced so far have been reported to be meiotically unstable and infertile,in contrast to established B.napus cultivars.This hinders both maintenance and use of this germplasm in breeding programs.We characterized a large set of 140 resynthesized lines produced by crosses between B.rapa and B.oleracea,as well as between B.rapa and wild C genome species(B.incana,B.hilarionis,B.montana,B.Bourgeaui,B.villosa and B.cretica)for purity(homozygosity),fertility,and genome stability.Self-pollinated seed set,seeds per ten pods as well as percentage pollen viability were used to estimate fertility.SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 116 genotypes,with at least three individuals per line.Most of the material which had been advanced through multiple generations was no longer pure,with heterozygosity detected corresponding to unknown parental contributions via outcrossing.Fertility and genome stability were both genotypedependent.Most lines had high numbers of copy number variants(CNVs),indicative of meiotic instability,and high numbers of CNVs were significantly associated with reduced fertility.Eight putatively stable resynthesized B.napus lines were observed.Further investigation of these lines may reveal the mechanisms underlying this effect.Our results suggest that selection of stable resynthesized lines for breeding purposes is possible.展开更多
Objective: The aim of the study was to observe the expressions of genes related to genome stability and DNA repair in the members of nasopharyngeal carcinoma (NPC) clustedng families. Methods: In the Zhongshan Cit...Objective: The aim of the study was to observe the expressions of genes related to genome stability and DNA repair in the members of nasopharyngeal carcinoma (NPC) clustedng families. Methods: In the Zhongshan City where there is highly incidence rate of NPC, we chose the members of the NPC clustering families as objects, and the patients of nasopharyngitis and NPC as the control group. We isolated the RNA from the nasopharyngeal tissue, and synthesized its cRNA, the genome stability and DNA repair genes chip technique, chemiluminescent detection and real-time fluorescence quantita- tive technique were used to examine the genome stability and DNA repair genes in the nasopharyngeal tissue. Results: More genome stability and DNA repair genes were up-regulated in the members of the NPC clustering families than the NPC patients, and the range of up-regulated was high, with the over up-regulated 100 times genes including TEP1, MSH4, PMS2LI. Fewer genome stability and DNA repair genes were down-regulated in the members of the NPC clustering families than the NPC patients, the ubiquitin genes almost were down-regulated, the results also could be confirmed by real-time fluorescence quantitative PCR. Conclusion: There are specially expression character of genome stability and DNA repair genes in the members of NPC clustering families.展开更多
While Mek1/2 and Gsk3βinhibition("2i")supports the maintenance of murine embryonic stem cells(EsCs)in a homogenous naive state,prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impa...While Mek1/2 and Gsk3βinhibition("2i")supports the maintenance of murine embryonic stem cells(EsCs)in a homogenous naive state,prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential.Additionally,2i fails to support derivation and culture of fully potent female ESCs.Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin(AlbuMAx)undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture.Mechanisticaily,lipids in AlbuMAx impact intracellular metabolism including nucleotide biosynthesis,lipid biogenesis,and TCA cycle intermediates,with enhanced expression of DNMT3s that prevent DNA hypomethylation.Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation,which also alleviates X chromosome loss in female ESCs.Importantly,both male and female"all-ESc"mice can be generated from de novo derived ESCs using AlbuMAXbased media.Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.展开更多
We are very pleased to announce a special issue, to be published in June, 2016, on "Genome Stability" in the journal Genomics, Proteomies & Bioinformaties (GPB). This special issue aims to provide a platform for ...We are very pleased to announce a special issue, to be published in June, 2016, on "Genome Stability" in the journal Genomics, Proteomies & Bioinformaties (GPB). This special issue aims to provide a platform for specialists or experts in the field to report their results and share their opinions on the topic. We are inviting you to submit high-quality papers to this special issue. The guest editors for this special issue are Dr. Zhao-Qi Wang (The Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Germany), Dr. Xingzbi Xu (Capital Normal University, China), and Dr. Daochun Kong (Peking University, China).展开更多
Here, we provide data suggesting that the absence of silencing of the ectopic reprogramming factors used to reprogram somatic cells to induced pluripotent stem cells (iPSCs) may predispose iPSCs to genomic instabili...Here, we provide data suggesting that the absence of silencing of the ectopic reprogramming factors used to reprogram somatic cells to induced pluripotent stem cells (iPSCs) may predispose iPSCs to genomic instability. We encourage stem cell scientists to undertake an extensive characterization and standardization of much larger cohorts of iPSC lines in order to set up rigorous criteria to define safe and stable bonafide iPSCs.展开更多
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromo...DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.展开更多
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides c...Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.展开更多
In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our...In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.展开更多
Barley(Hordeum vulgare L.)is one of the most Aluminum(Al)sensitive cereal species.In this study,the physiological,biochemical,and molecular response of barley seedlings to Al treatment was examined to gain insight int...Barley(Hordeum vulgare L.)is one of the most Aluminum(Al)sensitive cereal species.In this study,the physiological,biochemical,and molecular response of barley seedlings to Al treatment was examined to gain insight into Al response and tolerance mechanisms.The results showed that superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)activity were inhibited to different degrees following Al exposure.The MDA content also significantly increased with increasing Al concentrations.SRAP results indicated significant differences between Al treatments and controls in terms of SRAP profile,and the genomic template stability(GTS)decreased with increasing Al concentration and duration.These integrative results help to elucidate the underlying mechanisms that the barley response to Al toxicity.展开更多
AIM To evaluate the relation between 12 polymorphisms and the development of gastric cancer(GC) and colorectal cancer(CRC).METHODS In this study,we included 125 individuals with GC diagnosis,66 individuals with CRC di...AIM To evaluate the relation between 12 polymorphisms and the development of gastric cancer(GC) and colorectal cancer(CRC).METHODS In this study,we included 125 individuals with GC diagnosis,66 individuals with CRC diagnosis and 475 cancer-free individuals. All participants resided in the North region of Brazil and authorized the use of their samples. The 12 polymorphisms(in CASP8,CYP2 E1,CYP19 A1,IL1 A,IL4,MDM2,NFKB1,PAR1,TP53,TYMS,UGT1 A1 and XRCC1 genes) were genotyped in a single PCR for each individual,followed by fragment analysis. To avoid misinterpretation due to population substructure,we applied a previously developed set of 61 ancestryinformative markers that can also be genotyped by multiplex PCR. The statistical analyses were performed in Structure v.2.3.4,R environment and SPSS v.20.RESULTS After statistical analyses with the control of confounding factors,such as genetic ancestry,three markers(rs79071878 in IL4,rs3730485 in MDM2 and rs28362491 in NFKB1) were positively associated with the development of GC. One of these markers(rs28362491) and the marker in the UGT1 A1 gene(rs8175347) were positively associated with the development of CRC. Therefore,we investigated whether the joint presence of the deleterious alleles of each marker could affect the development of cancer and we obtained positive results in all analyses. Carriers of the combination of alleles RP1 + DEL(rs79071878 and rs28361491,respectively) are at 10-times greater risk of developing GC than carriers of other combinations. Similarly,carriers of the combination of DEL + RARE(rs283628 and rs8175347) are at about 12-times greater risk of developing CRC than carriers of other combinations.CONCLUSION These findings are important for the comprehension of gastric and CRC development,particularly in highly admixed populations,such as the Brazilian population.展开更多
Nypa fruticans(Wurmb),a mangrove palm species with origins dating back to the Late Cretaceous period,is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolu...Nypa fruticans(Wurmb),a mangrove palm species with origins dating back to the Late Cretaceous period,is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms.Here,we present a chromosome-level genome sequence and assembly for N.fruticans.We integrated the genomes of N.fruticans and other palm family members for a comparative genomic analysis,which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago,shaping the distinctive characteristics observed in this clade.We also inferred a low mutation rate for the N.fruticans genome,which underwent strong purifying selection and evolved slowly,thus contributing to its stability over a long evolutionary period.Moreover,ancient duplicates were preferentially retained,with critical genes having experienced positive selection,enhancing waterlogging tolerance in N.fruticans.Furthermore,we discovered that the pseudogenization of Early Methionine-labelled 1(EM1)and EM6 in N.fruticans underly its crypto-vivipary characteristics,reflecting its intertidal adaptation.Our study provides valuable genomic insights into the evolutionary history,genome stability,and adaptive evolution of the mangrove palm.Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.展开更多
Ribonuclease P(RNase P)was first described in the 1970’s as an endoribonuclease acting in the maturation of precursor transfer RNAs(tRNAs).More recent studies,however,have uncovered non-canonical roles for RNase P an...Ribonuclease P(RNase P)was first described in the 1970’s as an endoribonuclease acting in the maturation of precursor transfer RNAs(tRNAs).More recent studies,however,have uncovered non-canonical roles for RNase P and its components.Here,we review the recent progress of its involvement in chromatin assembly,DNA damage response,and maintenance of genome stability with implications in tumorigenesis.The possibility of RNase P as a therapeutic target in cancer is also discussed.展开更多
An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex,which was thought to be a rare by-product of transcription.However,recent genome-wide da...An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex,which was thought to be a rare by-product of transcription.However,recent genome-wide data have shown that R-loops are widespread and pervasive in a variety of genomes,and a growing body of experimental evidence indicates that R-loops have both beneficial and harmful effects on an organism.To maximize benefit and avoid harm,organisms have evolved several means by which they tightly regulate R-loop levels.Here,we summarize our current understanding of the biogenesis and effects of R-loops,the mechanisms that regulate them,and methods of R-loop profiling,reviewing recent research advances on R-loops in plants.Furthermore,we provide perspectives on future research directions for R-loop biology in plants,which might lead to a more comprehensive understanding of R-loop functions in plant genome regulation and contribute to future agricultural improvements.展开更多
Vectored vaccines based on highly attenuated modified vaccinia Ankara(MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is u...Vectored vaccines based on highly attenuated modified vaccinia Ankara(MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a nonplaque-purified preparation of MVA in a continuous anatine suspension cell line(CR.pIX) in chemically defined medium.The novel isolate(MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVACR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA:although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.展开更多
Background:Induced pluripotent stem cells(iPSCs)and embryonic stem cells(ESCs)share many common features,including similar morphology,gene expression and in vitro differentiation profiles.However,genomic stability is ...Background:Induced pluripotent stem cells(iPSCs)and embryonic stem cells(ESCs)share many common features,including similar morphology,gene expression and in vitro differentiation profiles.However,genomic stability is much lower in iPSCs than in ESCs.In the current study,we examined whether changes in DNA damage repair in iPSCs are responsible for their greater tendency towards mutagenesis.Methods:Mouse iPSCs,ESCs and embryonic fibroblasts were exposed to ionizing radiation(4 Gy)to introduce dou-ble-strand DNA breaks.At 4 h later,fidelity of DNA damage repair was assessed using whole-genome re-sequencing.We also analyzed genomic stability in mice derived from iPSCs versus ESCs.Results:In comparison to ESCs and embryonic fibroblasts,iPSCs had lower DNA damage repair capacity,more somatic mutations and short indels after irradiation.iPSCs showed greater non-homologous end joining DNA repair and less homologous recombination DNA repair.Mice derived from iPSCs had lower DNA damage repair capacity than ESC-derived mice as well as C57 control mice.Conclusions:The relatively low genomic stability of iPSCs and their high rate of tumorigenesis in vivo appear to be due,at least in part,to low fidelity of DNA damage repair.展开更多
Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome. In this review, we will discuss the influence of viral pathogens ...Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome. In this review, we will discuss the influence of viral pathogens on somatic and meiotic genome stability of Nicotiana tabacum and Arabidopsis thaliana. Plants infected with a compatible pathogen generate a systemic recombination signal that precedes the spread of pathogens and results in changes in the somatic and meiotic recombination frequency. The progeny of infected plants exhibit changes in global and locusspecific DNA methylation patterns, genomic rearrangements at transgenic reporter loci and resistance gene-like-loci, and even tolerance to pathogen infection and abiotic stress. Here, we will discuss the contribution of environmental stresses to genome evolution and will focus on the role of heritable epigenetic changes in response to pathogen infection.展开更多
DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle.Loss of proper...DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle.Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication,which can cause genome instability and tumorigenesis.Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects.These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints.Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells,indicating that proper functioning of these pathways is essential for maintaining genome stability.In this review,we discuss the regulatory mechanisms of licensing control,the deleterious consequences when both licensing and checkpoints are compromised,and present possible mechanisms to prevent re-replication in order to maintain genome stability.展开更多
As a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identi...As a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.展开更多
DNA double-strand breaks(DSBs),which arise following exposure to a number of endogenous and exogenous agents,can be repaired by either the homologous recombination(HR)or non-homologous end-joining(NHEJ) pathways...DNA double-strand breaks(DSBs),which arise following exposure to a number of endogenous and exogenous agents,can be repaired by either the homologous recombination(HR)or non-homologous end-joining(NHEJ) pathways in eukaryotic cells.A vital step in HR repair is DNA end resection,which generates a long 30single-stranded DNA(ss DNA) tail that can invade the homologous DNA strand.The generation of 30 ss DNA is not only essential for HR repair,but also promotes activation of the ataxia telangiectasia and Rad3-related protein(ATR).Multiple factors,including the MRN/X complex,C-terminal-binding protein interacting protein(Ct IP)/Sae2,exonuclease 1(EXO1),Bloom syndrome protein(BLM)/Sgs1,DNA2 nuclease/helicase,and several chromatin remodelers,cooperate to complete the process of end resection.Here we review the basic machinery involved in DNA end resection in eukaryotic cells.展开更多
Aim:The transcription factor RIP140(receptor interacting protein of 140 kDa)is involved in intestinal tumorigenesis.It plays a role in the control of microsatellite instability(MSI),through the regulation of MSH2 and ...Aim:The transcription factor RIP140(receptor interacting protein of 140 kDa)is involved in intestinal tumorigenesis.It plays a role in the control of microsatellite instability(MSI),through the regulation of MSH2 and MSH6 gene expression.The aim of this study was to explore its effect on the expression of POLK,the gene encoding the specialized translesion synthesis(TLS)DNA polymeraseκknown to perform accurate DNA synthesis at microsatellites.Methods:Different mouse models and engineered human colorectal cancer(CRC)cell lines were used to analyze by RT-qPCR,while Western blotting and luciferase assays were used to elucidate the role of RIP140 on POLK gene expression.Published DNA microarray datasets were reanalyzed.The in vitro sensitivity of CRC cells to methyl methane sulfonate and cisplatin was determined.Results:RIP140 positively regulates,at the transcriptional level,the expression of the POLK gene,and this effect involves,at least partly,the p53 tumor suppressor.In different cohorts of CRC biopsies(with or without MSI),a strong positive correlation was observed between RIP140 and POLK gene expression.In connection with its effect on POLK levels and the TLS function of this polymerase,the cellular response to methyl methane sulfonate was increased in cells lacking the Rip140 gene.Finally,the association of RIP140 expression with better overall survival of CRC patients was observed only when the corresponding tumors exhibited low levels of POLK,thus strengthening the functional link between the two genes in human CRC.Conclusion:The regulation of POLK gene expression by RIP140 could thus contribute to the maintenance of microsatellite stability,and more generally to the control of genome integrity.展开更多
基金funded by the German Research Council(DFG grant MA6473/2-1,awarded to AM)The Mason lab is partially funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy-EXC 2070-390732324.
文摘Rapeseed(Brassica napus,AACC)was formed by hybridization between progenitor species Brassica rapa(AA)and Brassica oleracea(CC).As a result of a limited number of hybridization events between specific progenitor genotypes and strong breeding selection for oil quality traits,rapeseed has limited genetic diversity.The production of resynthesized B.napus lines via interspecific hybridization of the diploid progenitor species B.rapa and B.oleracea is one possible way to increase genetic variation in rapeseed.However,most resynthesized lines produced so far have been reported to be meiotically unstable and infertile,in contrast to established B.napus cultivars.This hinders both maintenance and use of this germplasm in breeding programs.We characterized a large set of 140 resynthesized lines produced by crosses between B.rapa and B.oleracea,as well as between B.rapa and wild C genome species(B.incana,B.hilarionis,B.montana,B.Bourgeaui,B.villosa and B.cretica)for purity(homozygosity),fertility,and genome stability.Self-pollinated seed set,seeds per ten pods as well as percentage pollen viability were used to estimate fertility.SNP genotyping was performed using the Illumina Infinium Brassica 60K array for 116 genotypes,with at least three individuals per line.Most of the material which had been advanced through multiple generations was no longer pure,with heterozygosity detected corresponding to unknown parental contributions via outcrossing.Fertility and genome stability were both genotypedependent.Most lines had high numbers of copy number variants(CNVs),indicative of meiotic instability,and high numbers of CNVs were significantly associated with reduced fertility.Eight putatively stable resynthesized B.napus lines were observed.Further investigation of these lines may reveal the mechanisms underlying this effect.Our results suggest that selection of stable resynthesized lines for breeding purposes is possible.
基金Supported by a grant from the National Natural Science Foundation of China (No.30672713)
文摘Objective: The aim of the study was to observe the expressions of genes related to genome stability and DNA repair in the members of nasopharyngeal carcinoma (NPC) clustedng families. Methods: In the Zhongshan City where there is highly incidence rate of NPC, we chose the members of the NPC clustering families as objects, and the patients of nasopharyngitis and NPC as the control group. We isolated the RNA from the nasopharyngeal tissue, and synthesized its cRNA, the genome stability and DNA repair genes chip technique, chemiluminescent detection and real-time fluorescence quantita- tive technique were used to examine the genome stability and DNA repair genes in the nasopharyngeal tissue. Results: More genome stability and DNA repair genes were up-regulated in the members of the NPC clustering families than the NPC patients, and the range of up-regulated was high, with the over up-regulated 100 times genes including TEP1, MSH4, PMS2LI. Fewer genome stability and DNA repair genes were down-regulated in the members of the NPC clustering families than the NPC patients, the ubiquitin genes almost were down-regulated, the results also could be confirmed by real-time fluorescence quantitative PCR. Conclusion: There are specially expression character of genome stability and DNA repair genes in the members of NPC clustering families.
基金supported by the New York State Stem Cell Science Program under contract C32581GGthe National Institutes of Health under award numbers:1 R01 GM129380-01 and 1R210OD031973-01 (to D.W.).
文摘While Mek1/2 and Gsk3βinhibition("2i")supports the maintenance of murine embryonic stem cells(EsCs)in a homogenous naive state,prolonged culture in 2i results in aneuploidy and DNA hypomethylation that impairs developmental potential.Additionally,2i fails to support derivation and culture of fully potent female ESCs.Here we find that mouse ESCs cultured in 2i/LIF supplemented with lipid-rich albumin(AlbuMAx)undergo pluripotency transition yet maintain genomic stability and full potency over long-term culture.Mechanisticaily,lipids in AlbuMAx impact intracellular metabolism including nucleotide biosynthesis,lipid biogenesis,and TCA cycle intermediates,with enhanced expression of DNMT3s that prevent DNA hypomethylation.Lipids induce a formative-like pluripotent state through direct stimulation of Erk2 phosphorylation,which also alleviates X chromosome loss in female ESCs.Importantly,both male and female"all-ESc"mice can be generated from de novo derived ESCs using AlbuMAXbased media.Our findings underscore the importance of lipids to pluripotency and link nutrient cues to genome integrity in early development.
文摘We are very pleased to announce a special issue, to be published in June, 2016, on "Genome Stability" in the journal Genomics, Proteomies & Bioinformaties (GPB). This special issue aims to provide a platform for specialists or experts in the field to report their results and share their opinions on the topic. We are inviting you to submit high-quality papers to this special issue. The guest editors for this special issue are Dr. Zhao-Qi Wang (The Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Germany), Dr. Xingzbi Xu (Capital Normal University, China), and Dr. Daochun Kong (Peking University, China).
文摘Here, we provide data suggesting that the absence of silencing of the ectopic reprogramming factors used to reprogram somatic cells to induced pluripotent stem cells (iPSCs) may predispose iPSCs to genomic instability. We encourage stem cell scientists to undertake an extensive characterization and standardization of much larger cohorts of iPSC lines in order to set up rigorous criteria to define safe and stable bonafide iPSCs.
文摘DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.
文摘Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.
文摘In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.
基金This research was funded by National Key Technology Research and Development Program(2015BAD01B02)the National Natural Science Foundation of China(31401316).
文摘Barley(Hordeum vulgare L.)is one of the most Aluminum(Al)sensitive cereal species.In this study,the physiological,biochemical,and molecular response of barley seedlings to Al treatment was examined to gain insight into Al response and tolerance mechanisms.The results showed that superoxide dismutase(SOD),peroxidase(POD)and catalase(CAT)activity were inhibited to different degrees following Al exposure.The MDA content also significantly increased with increasing Al concentrations.SRAP results indicated significant differences between Al treatments and controls in terms of SRAP profile,and the genomic template stability(GTS)decreased with increasing Al concentration and duration.These integrative results help to elucidate the underlying mechanisms that the barley response to Al toxicity.
基金Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nível Superior(CAPES)Pró-Reitoria de Pesquisa e Pós-Graduacao da Universidade Federal do Pará/Fundacao Amparo e Desenvolvimento da Pesquisa(PROPESP-UFPA/FADESP)
文摘AIM To evaluate the relation between 12 polymorphisms and the development of gastric cancer(GC) and colorectal cancer(CRC).METHODS In this study,we included 125 individuals with GC diagnosis,66 individuals with CRC diagnosis and 475 cancer-free individuals. All participants resided in the North region of Brazil and authorized the use of their samples. The 12 polymorphisms(in CASP8,CYP2 E1,CYP19 A1,IL1 A,IL4,MDM2,NFKB1,PAR1,TP53,TYMS,UGT1 A1 and XRCC1 genes) were genotyped in a single PCR for each individual,followed by fragment analysis. To avoid misinterpretation due to population substructure,we applied a previously developed set of 61 ancestryinformative markers that can also be genotyped by multiplex PCR. The statistical analyses were performed in Structure v.2.3.4,R environment and SPSS v.20.RESULTS After statistical analyses with the control of confounding factors,such as genetic ancestry,three markers(rs79071878 in IL4,rs3730485 in MDM2 and rs28362491 in NFKB1) were positively associated with the development of GC. One of these markers(rs28362491) and the marker in the UGT1 A1 gene(rs8175347) were positively associated with the development of CRC. Therefore,we investigated whether the joint presence of the deleterious alleles of each marker could affect the development of cancer and we obtained positive results in all analyses. Carriers of the combination of alleles RP1 + DEL(rs79071878 and rs28361491,respectively) are at 10-times greater risk of developing GC than carriers of other combinations. Similarly,carriers of the combination of DEL + RARE(rs283628 and rs8175347) are at about 12-times greater risk of developing CRC than carriers of other combinations.CONCLUSION These findings are important for the comprehension of gastric and CRC development,particularly in highly admixed populations,such as the Brazilian population.
基金supported by the National Natural Science Foundation of China(32170230,31971540,31830005,42276159)the Guangdong Basic and Applied Basic Research Foundation(2023B1515020083)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021006)。
文摘Nypa fruticans(Wurmb),a mangrove palm species with origins dating back to the Late Cretaceous period,is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms.Here,we present a chromosome-level genome sequence and assembly for N.fruticans.We integrated the genomes of N.fruticans and other palm family members for a comparative genomic analysis,which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago,shaping the distinctive characteristics observed in this clade.We also inferred a low mutation rate for the N.fruticans genome,which underwent strong purifying selection and evolved slowly,thus contributing to its stability over a long evolutionary period.Moreover,ancient duplicates were preferentially retained,with critical genes having experienced positive selection,enhancing waterlogging tolerance in N.fruticans.Furthermore,we discovered that the pseudogenization of Early Methionine-labelled 1(EM1)and EM6 in N.fruticans underly its crypto-vivipary characteristics,reflecting its intertidal adaptation.Our study provides valuable genomic insights into the evolutionary history,genome stability,and adaptive evolution of the mangrove palm.Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
基金supported by the National Natural Science Foundation of China(Grant No.32090031)the Shenzhen Science and Technology Innovation Commission(Grant Nos.JCYJ20220818095616035 and JCYJ201805073000163).
文摘Ribonuclease P(RNase P)was first described in the 1970’s as an endoribonuclease acting in the maturation of precursor transfer RNAs(tRNAs).More recent studies,however,have uncovered non-canonical roles for RNase P and its components.Here,we review the recent progress of its involvement in chromatin assembly,DNA damage response,and maintenance of genome stability with implications in tumorigenesis.The possibility of RNase P as a therapeutic target in cancer is also discussed.
基金the National Natural Science Foundation of China(Grant Nos.91740105 and 31822028 to Q.Sun32100428 to J.Zhou+2 种基金and 32070651 to W.Zhang)supported by the Tsinghua-Peking Center for Life Sciencessupported by postdoc fellowships from the Tsinghua-Peking Center for Life Sciences。
文摘An R-loop is a three-stranded chromatin structure that consists of a displaced single strand of DNA and an RNA:DNA hybrid duplex,which was thought to be a rare by-product of transcription.However,recent genome-wide data have shown that R-loops are widespread and pervasive in a variety of genomes,and a growing body of experimental evidence indicates that R-loops have both beneficial and harmful effects on an organism.To maximize benefit and avoid harm,organisms have evolved several means by which they tightly regulate R-loop levels.Here,we summarize our current understanding of the biogenesis and effects of R-loops,the mechanisms that regulate them,and methods of R-loop profiling,reviewing recent research advances on R-loops in plants.Furthermore,we provide perspectives on future research directions for R-loop biology in plants,which might lead to a more comprehensive understanding of R-loop functions in plant genome regulation and contribute to future agricultural improvements.
基金Part of this work was financially supported by the EU FP7 Grant FLUNIVAC(Project-ID 602604).
文摘Vectored vaccines based on highly attenuated modified vaccinia Ankara(MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a nonplaque-purified preparation of MVA in a continuous anatine suspension cell line(CR.pIX) in chemically defined medium.The novel isolate(MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVACR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA:although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.
基金supported by the Precision Medicine Research Program of the Chinese Academy of Sciences(KJZD-EW-L14)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA01040407)+2 种基金National Natural Science Foundation of China(31471395,91019024,31540033 and 31100558)National Basic Research Program of China(973 Program,2012CB518302 and 2013CB911001)100 Talents Project.
文摘Background:Induced pluripotent stem cells(iPSCs)and embryonic stem cells(ESCs)share many common features,including similar morphology,gene expression and in vitro differentiation profiles.However,genomic stability is much lower in iPSCs than in ESCs.In the current study,we examined whether changes in DNA damage repair in iPSCs are responsible for their greater tendency towards mutagenesis.Methods:Mouse iPSCs,ESCs and embryonic fibroblasts were exposed to ionizing radiation(4 Gy)to introduce dou-ble-strand DNA breaks.At 4 h later,fidelity of DNA damage repair was assessed using whole-genome re-sequencing.We also analyzed genomic stability in mice derived from iPSCs versus ESCs.Results:In comparison to ESCs and embryonic fibroblasts,iPSCs had lower DNA damage repair capacity,more somatic mutations and short indels after irradiation.iPSCs showed greater non-homologous end joining DNA repair and less homologous recombination DNA repair.Mice derived from iPSCs had lower DNA damage repair capacity than ESC-derived mice as well as C57 control mice.Conclusions:The relatively low genomic stability of iPSCs and their high rate of tumorigenesis in vivo appear to be due,at least in part,to low fidelity of DNA damage repair.
文摘Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome. In this review, we will discuss the influence of viral pathogens on somatic and meiotic genome stability of Nicotiana tabacum and Arabidopsis thaliana. Plants infected with a compatible pathogen generate a systemic recombination signal that precedes the spread of pathogens and results in changes in the somatic and meiotic recombination frequency. The progeny of infected plants exhibit changes in global and locusspecific DNA methylation patterns, genomic rearrangements at transgenic reporter loci and resistance gene-like-loci, and even tolerance to pathogen infection and abiotic stress. Here, we will discuss the contribution of environmental stresses to genome evolution and will focus on the role of heritable epigenetic changes in response to pathogen infection.
基金supported by the NIH R01 Grant CA102361 and NIH R01 Grant GM080677 to X.W.,and the NIH Training Grant DK007022-30 to L.T.
文摘DNA replication is a highly regulated process involving a number of licensing and replication factors that function in a carefully orchestrated manner to faithfully replicate DNA during every cell cycle.Loss of proper licensing control leads to deregulated DNA replication including DNA re-replication,which can cause genome instability and tumorigenesis.Eukaryotic organisms have established several conserved mechanisms to prevent DNA re-replication and to counteract its potentially harmful effects.These mechanisms include tightly controlled regulation of licensing factors and activation of cell cycle and DNA damage checkpoints.Deregulated licensing control and its associated compromised checkpoints have both been observed in tumor cells,indicating that proper functioning of these pathways is essential for maintaining genome stability.In this review,we discuss the regulatory mechanisms of licensing control,the deleterious consequences when both licensing and checkpoints are compromised,and present possible mechanisms to prevent re-replication in order to maintain genome stability.
文摘As a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.
基金supported in part by the grants from the National Natural Science Foundation of China (Grant Nos.31071243 and 31171347)the Fundamental Research Funds for the Central Universities of Chinathe Research Fund for the Doctoral Program of Higher Education of China (Grant No.20110101120152)
文摘DNA double-strand breaks(DSBs),which arise following exposure to a number of endogenous and exogenous agents,can be repaired by either the homologous recombination(HR)or non-homologous end-joining(NHEJ) pathways in eukaryotic cells.A vital step in HR repair is DNA end resection,which generates a long 30single-stranded DNA(ss DNA) tail that can invade the homologous DNA strand.The generation of 30 ss DNA is not only essential for HR repair,but also promotes activation of the ataxia telangiectasia and Rad3-related protein(ATR).Multiple factors,including the MRN/X complex,C-terminal-binding protein interacting protein(Ct IP)/Sae2,exonuclease 1(EXO1),Bloom syndrome protein(BLM)/Sgs1,DNA2 nuclease/helicase,and several chromatin remodelers,cooperate to complete the process of end resection.Here we review the basic machinery involved in DNA end resection in eukaryotic cells.
文摘Aim:The transcription factor RIP140(receptor interacting protein of 140 kDa)is involved in intestinal tumorigenesis.It plays a role in the control of microsatellite instability(MSI),through the regulation of MSH2 and MSH6 gene expression.The aim of this study was to explore its effect on the expression of POLK,the gene encoding the specialized translesion synthesis(TLS)DNA polymeraseκknown to perform accurate DNA synthesis at microsatellites.Methods:Different mouse models and engineered human colorectal cancer(CRC)cell lines were used to analyze by RT-qPCR,while Western blotting and luciferase assays were used to elucidate the role of RIP140 on POLK gene expression.Published DNA microarray datasets were reanalyzed.The in vitro sensitivity of CRC cells to methyl methane sulfonate and cisplatin was determined.Results:RIP140 positively regulates,at the transcriptional level,the expression of the POLK gene,and this effect involves,at least partly,the p53 tumor suppressor.In different cohorts of CRC biopsies(with or without MSI),a strong positive correlation was observed between RIP140 and POLK gene expression.In connection with its effect on POLK levels and the TLS function of this polymerase,the cellular response to methyl methane sulfonate was increased in cells lacking the Rip140 gene.Finally,the association of RIP140 expression with better overall survival of CRC patients was observed only when the corresponding tumors exhibited low levels of POLK,thus strengthening the functional link between the two genes in human CRC.Conclusion:The regulation of POLK gene expression by RIP140 could thus contribute to the maintenance of microsatellite stability,and more generally to the control of genome integrity.