As a living information and communications system, the genome encodes patterns in single nucleotide polymorphisms (SNPs) reflecting human adaptation that optimizes population survival in differing environments. This p...As a living information and communications system, the genome encodes patterns in single nucleotide polymorphisms (SNPs) reflecting human adaptation that optimizes population survival in differing environments. This paper mathematically models environmentally induced adaptive forces that quantify changes in the distribution of SNP frequencies between populations. We make direct connections between biophysical methods (e.g. minimizing genomic free energy) and concepts in population genetics. Our unbiased computer program scanned a large set of SNPs in the major histocompatibility complex region and flagged an altitude dependency on a SNP associated with response to oxygen deprivation. The statistical power of our double-blind approach is demonstrated in the flagging of mathematical functional correlations of SNP information-based potentials in multiple populations with specific environmental parameters. Furthermore, our approach provides insights for new discoveries on the biology of common variants. This paper demonstrates the power of biophysical modeling of population diversity for better understanding genome-environment interactions in biological phenomenon.展开更多
The human genome is a complex, dynamic information system that encodes principles of life and living systems. These principles are incorporated in the structure of human genome sequence variation and are foundational ...The human genome is a complex, dynamic information system that encodes principles of life and living systems. These principles are incorporated in the structure of human genome sequence variation and are foundational for the continuity of life and human survival. Using first principles of thermodynamics and statistical physics, we have developed analogous “genodynamic tools” for population genomic studies. Characterizing genomic information through the lens of physics has allowed us to develop energy measures for modeling genome-environment interactions. In developing biophysical parameters for genome-environment homeostasis, we found that stable genomic free energy trades off low genomic energy (genomic conservation and increased order) and high genomic entropy (genomic variation) with an environmental potential that drives the variation. In our approach, we assert that common variants are dynamic sites in the genome of a population and that the stability of whole genome adaptation is reflected in the frequencies of maintained diversity in common variants for the population in its environment. In this paper, we address the relativity of whole genome adaptation towards homeostasis. By this we mean that adaptive forces are directly reflected in the frequency distribution of alleles and/or haplotypes of the population relative to its environment, with adaptive forces driving the genome towards homeostasis. The use of genomic energy units as a biophysical metric in DNA sequence variation analyses provides new insights into the foundations of population biology and diversity. Using our biophysical tools, population differences directly reflect the adaptive influences of the environment on populations.展开更多
文摘As a living information and communications system, the genome encodes patterns in single nucleotide polymorphisms (SNPs) reflecting human adaptation that optimizes population survival in differing environments. This paper mathematically models environmentally induced adaptive forces that quantify changes in the distribution of SNP frequencies between populations. We make direct connections between biophysical methods (e.g. minimizing genomic free energy) and concepts in population genetics. Our unbiased computer program scanned a large set of SNPs in the major histocompatibility complex region and flagged an altitude dependency on a SNP associated with response to oxygen deprivation. The statistical power of our double-blind approach is demonstrated in the flagging of mathematical functional correlations of SNP information-based potentials in multiple populations with specific environmental parameters. Furthermore, our approach provides insights for new discoveries on the biology of common variants. This paper demonstrates the power of biophysical modeling of population diversity for better understanding genome-environment interactions in biological phenomenon.
文摘The human genome is a complex, dynamic information system that encodes principles of life and living systems. These principles are incorporated in the structure of human genome sequence variation and are foundational for the continuity of life and human survival. Using first principles of thermodynamics and statistical physics, we have developed analogous “genodynamic tools” for population genomic studies. Characterizing genomic information through the lens of physics has allowed us to develop energy measures for modeling genome-environment interactions. In developing biophysical parameters for genome-environment homeostasis, we found that stable genomic free energy trades off low genomic energy (genomic conservation and increased order) and high genomic entropy (genomic variation) with an environmental potential that drives the variation. In our approach, we assert that common variants are dynamic sites in the genome of a population and that the stability of whole genome adaptation is reflected in the frequencies of maintained diversity in common variants for the population in its environment. In this paper, we address the relativity of whole genome adaptation towards homeostasis. By this we mean that adaptive forces are directly reflected in the frequency distribution of alleles and/or haplotypes of the population relative to its environment, with adaptive forces driving the genome towards homeostasis. The use of genomic energy units as a biophysical metric in DNA sequence variation analyses provides new insights into the foundations of population biology and diversity. Using our biophysical tools, population differences directly reflect the adaptive influences of the environment on populations.