Here we report a systematic method for constructing a large scale kinetic metabolic model and its initial application to the modeling of central metabolism of Methylobacterium extorquens AM1, a methylotrophic and envi...Here we report a systematic method for constructing a large scale kinetic metabolic model and its initial application to the modeling of central metabolism of Methylobacterium extorquens AM1, a methylotrophic and environmental important bacterium. Its central metabolic network includes formaldehyde metabolism, serine cycle, citric acid cycle, pentose phosphate pathway, gluconeogensis, PHB synthesis and acetyl-CoA conversion pathway, respiration and energy metabolism. Through a systematic and consistent procedure of finding a set of parameters in the physiological range we overcome an outstanding difficulty in large scale kinetic modeling: the requirement for a massive number of enzymatic reaction parameters. We are able to construct the kinetic model based on general biological considerations and incomplete experimental kinetic parameters. Our method consists of the following major steps: 1) using a generic enzymatic rate equation to reduce the number of enzymatic parameters to a minimum set while still preserving their characteristics; 2) using a set of steady state fluxes and metabolite concentrations in the physiological range as the expected output steady state fluxes and metabolite concentrations for the kinetic model to restrict the parametric space of enzymatic reactions; 3) choosing enzyme constants K's and K'eqs optimized for reactions under physiological concentrations, if their experimental values are unknown; 4) for models which do not cover the entire metabolic network of the organisms, designing a dynamical exchange for the coupling between the metabolism represented in the model and the rest not included.展开更多
Environmental contamination of food is a worldwide public health problem. Folate mediated one- carbon metabolism plays an important role in epigenetic regulation of gene expression and mutagenesis. Many contaminants i...Environmental contamination of food is a worldwide public health problem. Folate mediated one- carbon metabolism plays an important role in epigenetic regulation of gene expression and mutagenesis. Many contaminants in food cause cancer through epigenetic mechanisms and/or DNA instability i.e. default methylation of uracil to thymine, subsequent to the decrease of 5-methylte- trahydrofolate (5 mTHF) pool in the one-carbon metabolism network. Evaluating consequences of an exposure to food contaminants based on systems biology approaches is a promising alternative field of investigation. This report presents a dynamic mathematical modeling for the study of the alteration in the one-carbon metabolism network by environmental factors. It provides a model for predicting “the impact of arbitrary contaminants that can induce the 5 mTHF deficiency. The model allows for a given experimental condition, the analysis of DNA methylation activity and dumping methylation in the de novo pathway of DNA synthesis.展开更多
In metabolic network modelling, the accuracy of kinetic parameters has become more important over the last two decades. Even a small perturbation in kinetic parameters may cause major changes in a model’s response. T...In metabolic network modelling, the accuracy of kinetic parameters has become more important over the last two decades. Even a small perturbation in kinetic parameters may cause major changes in a model’s response. The focus of this study is to identify the kinetic parameters, using two distinct approaches: firstly, a One-at-a-Time Sensitivity Measure, performed on 185 kinetic parameters, which represent glycolysis, pentose phosphate, TCA cycle, gluconeogenesis, glycoxylate pathways, and acetate formation. Time profiles for sensitivity indices were calculated for each parameter. Seven kinetic parameters were found to be highly affected in the model response;secondly, particle swarm optimization was applied for kinetic parameter identification of a metabolic network model. The simulation results proved the effectiveness of the proposed method.展开更多
Background:Synthetic microbial communities,with different strains brought together by balancing their nutrition and promoting their interactions,demonstrate great advantages for exploring complex performance of commun...Background:Synthetic microbial communities,with different strains brought together by balancing their nutrition and promoting their interactions,demonstrate great advantages for exploring complex performance of communities and for further biotechnology applications.The potential of such microbial communities has not been explored,due to our limited knowledge of the extremely complex microbial interactions that are involved in designing and controlling effective and stable communities.Results:Genome-scale metabolic models(GEM)have been demonstrated as an effective tool for predicting and guiding the investigation and design of microbial communities,since they can explicitly and efficiently predict the phenotype of organisms from their genotypic data and can be used to explore the molecular mechanisms of microbehabitats and microbe-microbe interactions.In this work,we reviewed two main categories of GEM-based approaches and three uses related to design of synthetic microbial communities:predicting multi-species interactions,exploring environmental impacts on microbial phenotypes,and optimizing community-level performance.Conclusions:Although at the infancy stage,GEM-based approaches exhibit an increasing scope of applications in designing synthetic microbial communities.Compared to other methods,especially the use of laboratory cultures,GEM-based approaches can greatly decrease the trial-and-error cost of various procedures for designing synthetic communities and improving their functionality,such as identifying community members,determining media composition,evaluating microbial interaction potential or selecting the best community configuration.Future efforts should be made to overcome the limitations of the approaches,ranging from quality control of GEM reconstructions to community-level modeling algorithms,so that more applications of GEMs in studying phenotypes of microbial communities can be expected.展开更多
Over the last 15 years,genome-scale metabolic models(GEMs)have been reconstructed for human and model animals,such as mouse and rat,to systematically understand metabolism,simulate multicellular or multi-tissue interp...Over the last 15 years,genome-scale metabolic models(GEMs)have been reconstructed for human and model animals,such as mouse and rat,to systematically understand metabolism,simulate multicellular or multi-tissue interplay,understand human diseases,and guide cell factory design for biopharmaceutical protein production.Here,we describe how metabolic networks can be represented using stoichiometric matrices and well-defined constraints for flux simulation.Then,we review the history of GEM development for quantitative understanding of Homo sapiens and other relevant animals,together with their applications.We describe how model develops from H.sapiens to other animals and from generic purpose to precise context-specific simulation.The progress of GEMs for animals greatly expand our systematic understanding of metabolism in human and related animals.We discuss the difficulties and present perspectives on the GEM development and the quest to integrate more biological processes and omics data for future research and translation.We truly hope that this review can inspire new models developed for other mammalian organisms and generate new algorithms for integrating big data to conduct more in-depth analysis to further make progress on human health and biopharmaceutical engineering.展开更多
High-quality genome-scale metabolic models(GEMs)could play critical roles on rational design of microbial cell factories in the classical Design-Build-Test-Learn cycle of synthetic biology studies.Despite of the const...High-quality genome-scale metabolic models(GEMs)could play critical roles on rational design of microbial cell factories in the classical Design-Build-Test-Learn cycle of synthetic biology studies.Despite of the constant establishment and update of GEMs for model microorganisms such as Escherichia coli and Saccharomyces cerevisiae,high-quality GEMs for non-model industrial microorganisms are still scarce.Zymomonas mobilis subsp.mobilis ZM4 is a non-model ethanologenic microorganism with many excellent industrial characteristics that has been developing as microbial cell factories for biochemical production.Although five GEMs of Z.mobilis have been constructed,these models are either generating ATP incorrectly,or lacking information of plasmid genes,or not providing standard format file.In this study,a high-quality GEM iZM516 of Z.mobilis ZM4 was constructed.The information from the improved genome annotation,literature,datasets of Biolog Phenotype Microarray studies,and recently updated Gene-Protein-Reaction information was combined for the curation of iZM516.Finally,516 genes,1389 reactions,1437 metabolites,and 3 cell compartments are included in iZM516,which also had the highest MEMOTE score of 91%among all published GEMs of Z.mobilis.Cell growth was then predicted by iZM516,which had 79.4%agreement with the experimental results of the substrate utilization.In addition,the potential endogenous succinate synthesis pathway of Z.mobilis ZM4 was proposed through simulation and analysis using iZM516.Furthermore,metabolic engineering strategies to produce succinate and 1,4-butanediol(1,4-BDO)were designed and then simulated under anaerobic condition using iZM516.The results indicated that 1.68 mol/mol succinate and 1.07 mol/mol 1,4-BDO can be achieved through combinational metabolic engineering strategies,which was comparable to that of the model species E.coli.Our study thus not only established a high-quality GEM iZM516 to help understand and design microbial cell factories for economic biochemical production using Z.mobilis as the chassis,but also provided guidance on building accurate GEMs for other non-model industrial microorganisms.展开更多
Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating c...Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years.However,if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge,the conflicts between stoichiometric and other constraints,such as thermodynamic feasibility and enzyme resource availability,would lead to distorted predictions.In this work,we investigated a prediction anomaly of EcoETM,a constraints-based metabolic network model,and introduced the idea of enzyme compartmentalization into the analysis process.Through rational combination of reactions,we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites.This allowed us to correct the pathway structures of L-serine and L-tryptophan.A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments.Notably,this work also reveals the trade-off between product yield and thermodynamic feasibility.Our work is of great value for the structural improvement of constraints-based models.展开更多
Based on the gene-protein-reaction (GPR) model of S. cerevisiae_iND750 and the method of constraint-based analysis, we first calculated the metabolic flux distribution of S. cere-visiae_iND750. Then we calculated the ...Based on the gene-protein-reaction (GPR) model of S. cerevisiae_iND750 and the method of constraint-based analysis, we first calculated the metabolic flux distribution of S. cere-visiae_iND750. Then we calculated the deletion impact of 438 calculable genes, one by one, on the metabolic flux redistribution of S. cere-visiae_iND750. Next we analyzed the correlation between v (describing deletion impact of one gene) and d (connection degree of one gene) and the correlation between v and Vgene (flux sum controlled by one gene), and found that both of them were not of linear relation. Furthermore, we sought out 38 important genes that most greatly affected the metabolic flux distribution, and determined their functional subsystems. We also found that many of these key genes were related to many but not several subsystems. Because the in silico model of S. cere-visiae_iND750 has been tested by many ex-periments, thus is credible, we can conclude that the result we obtained has biological sig-nificance.展开更多
Due to the increasing demand for microbially manufactured products in various industries,it has become important to find optimal designs for microbial cell factories by changing the direction of metabolic flow and its...Due to the increasing demand for microbially manufactured products in various industries,it has become important to find optimal designs for microbial cell factories by changing the direction of metabolic flow and its flux size by means of metabolic engineering such as knocking out competing pathways and introducing exogenous pathways to increase the yield of desired products.Recently,with the gradual cross-fertilization between computer science and bioinformatics fields,machine learning and intelligent optimization-based approaches have received much attention in Genome-scale metabolic network models(GSMMs)based on constrained optimization methods,and many high-quality related works have been published.Therefore,this paper focuses on the advances and applications of machine learning and intelligent optimization algorithms in metabolic engineering,with special emphasis on GSMMs.Specifically,the development history of GSMMs is first reviewed.Then,the analysis methods of GSMMs based on constraint optimization are presented.Next,this paper mainly reviews the development and application of machine learning and intelligent optimization algorithms in genome-scale metabolic models.In addition,the research gaps and future research potential in machine learning and intelligent optimization methods applied in GSMMs are discussed.展开更多
The increasing antimicrobial resistance has seriously threatened human health worldwide over the last three decades.This severe medical crisis and the dwindling antibiotic discovery pipeline require the development of...The increasing antimicrobial resistance has seriously threatened human health worldwide over the last three decades.This severe medical crisis and the dwindling antibiotic discovery pipeline require the development of novel antimicrobial treatments to combat life-threatening infections caused by multidrug-resistant micro-bial pathogens.However,the detailed mechanisms of action,resistance,and toxicity of many antimicrobials remain uncertain,significantly hampering the development of novel antimicrobials.Genome-scale metabolic model(GSMM)has been increasingly employed to investigate microbial metabolism.In this review,we discuss the latest progress of GSMM in antimicrobial pharmacology,particularly in elucidating the complex interplays of multiple metabolic pathways involved in antimicrobial activity,resistance,and toxicity.We also highlight the emerging areas of GSMM applications in modeling non-metabolic cellular activities(e.g.,gene expression),identi-fication of potential drug targets,and integration with machine learning and pharmacokinetic/pharmacodynamic modeling.Overall,GSMM has significant potential in elucidating the critical role of metabolic changes in antimi-crobial pharmacology,providing mechanistic insights that will guide the optimization of dosing regimens for the treatment of antimicrobial-resistant infections.展开更多
Background:Human immunodeficiency virus type 1(HIV-1)remains a persistent global health challenge.Therefore,a continuous exploration of novel therapeutic strategies is essential.A comprehensive understanding of how HI...Background:Human immunodeficiency virus type 1(HIV-1)remains a persistent global health challenge.Therefore,a continuous exploration of novel therapeutic strategies is essential.A comprehensive understanding of how HIV-1 utilizes the cellular metabolism machinery for replication can provide insights into new therapeutic approaches.Methods:In this study,we performed a flux balance analysis using a genome-scale metabolic model(GEM)integrated with an HIV-1 viral biomass objective function to identify potential targets for anti–HIV-1 interventions.We generated a GEM by integrating an HIV-1 production reaction into CD4+T cells and optimized for both host and virus optimal states as objective functions to depict metabolic profiles of cells in the status for optimal host biomass maintenance or for optimal HIV-1 virion production.Differential analysis was used to predict biochemical reactions altered optimal for HIV-1 production.In addition,we conducted in silico simulations involving gene and reaction knock-outs to identify potential anti–HIV-1 targets,which were subsequently validated by human phytohemagglutinin(PHA)blasts infected with HIV-1.Results:Differential analysis identified several altered biochemical reactions,including increased lysine uptake and oxidative phosphorylation(OXPHOS)activities in the virus optima compared with the host optima.In silico gene and reaction knock-out simulations revealed de novo pyrimidine synthesis,and OXPHOS could serve as potential anti–HIV-1 metabolic targets.In vitro assay confirmed that targeting OXPHOS using metformin could suppress the replication of HIV-1 by 56.6%(385.4±67.5 pg/mL in the metformintreated group vs.888.4±32.3 pg/mL in the control group,P<0.001).Conclusion:Our integrated host-virus genome-scale metabolic study provides insights on potential targets(OXPHOS)for anti-HIV therapies.展开更多
Genome-scale metabolic models(GEMs)have been widely used to design cell factories in silico.However,initial flux balance analysis only considers stoichiometry and reaction direction constraints,so it cannot accurately...Genome-scale metabolic models(GEMs)have been widely used to design cell factories in silico.However,initial flux balance analysis only considers stoichiometry and reaction direction constraints,so it cannot accurately describe the distribution of metabolic flux under the control of various regulatory mechanisms.In the recent years,by introducing enzymology,thermodynamics,and other multiomics-based constraints into GEMs,the metabolic state of cells under different conditions was more accurately simulated and a series of algorithms have been presented for microbial phenotypic analysis.Herein,the development of multiconstrained GEMs was reviewed by taking the constraints of enzyme kinetics,thermodynamics,and transcriptional regulatory mechanisms as examples.This review focused on introducing and summarizing GEMs application tools and cases in cell factory design.The challenges and prospects of GEMs development were also discussed.展开更多
Metabolism is regulated at multiple levels in response to the changes of internal or external conditions. Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the conce...Metabolism is regulated at multiple levels in response to the changes of internal or external conditions. Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the concentrations of metabolic enzymes. Thus, integration of the transcriptional regulatory information is necessary to improve the accuracy and predictive ability of metabolic models. Here we review the strategies for the reconstruction of a transcriptional regulatory network (TRN) for yeast and the integration of such a reconstruction into a flux balance analysis-based metabolic model. While many large-scale TRN reconstructions have been reported for yeast, these reconstructions still need to be improved regarding the functionality and dynamic property of the regulatory interactions. In addition, mathematical modeling approaches need to be further developed to efficiently integrate transcriptional regulatory interactions to genome-scale metabolic models in a quantitative manner.展开更多
Backgrounds Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above men...Backgrounds Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle.什)-2-( 1 -hydroxy 1-4-oxocycIohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-Iipoxygenase (5-LOX) and 15-LOX in vitro^ exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites, concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC? Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion-. Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.展开更多
Stoichiometry-based analyses of meta- bolic networks have aroused significant interest of systems biology researchers in recent years. It is necessary to develop a more convenient modeling platform on which users can ...Stoichiometry-based analyses of meta- bolic networks have aroused significant interest of systems biology researchers in recent years. It is necessary to develop a more convenient modeling platform on which users can reconstruct their network models using completely graphical operations, and explore them with powerful analyzing modules to get a better understanding of the properties of metabolic systems. Herein, an in silico platform, FluxExplorer, for metabolic modeling and analyses based on stoichiometry has been developed as a publicly available tool for systems biology research. This platform integrates various analytic approaches, in- cluding flux balance analysis, minimization of meta- bolic adjustment, extreme pathways analysis, shadow prices analysis, and singular value decom- position, providing a thorough characterization of the metabolic system. Using a graphic modeling process, metabolic networks can be reconstructed and modi- fied intuitively and conveniently. The inconsistencies of a model with respect to the FBA principles can be proved automatically. In addition, this platform sup- ports systems biology markup language (SBML). FluxExplorer has been applied to rebuild a metabolic network in mammalian mitochondria, producing meaningful results. Generally, it is a powerful and very convenient tool for metabolic network modeling and analysis.展开更多
基金USA National Institutes of Health(Nos.K25-HG002894-05(P.A.)GM36296(L.W.L.and M.E.L.)
文摘Here we report a systematic method for constructing a large scale kinetic metabolic model and its initial application to the modeling of central metabolism of Methylobacterium extorquens AM1, a methylotrophic and environmental important bacterium. Its central metabolic network includes formaldehyde metabolism, serine cycle, citric acid cycle, pentose phosphate pathway, gluconeogensis, PHB synthesis and acetyl-CoA conversion pathway, respiration and energy metabolism. Through a systematic and consistent procedure of finding a set of parameters in the physiological range we overcome an outstanding difficulty in large scale kinetic modeling: the requirement for a massive number of enzymatic reaction parameters. We are able to construct the kinetic model based on general biological considerations and incomplete experimental kinetic parameters. Our method consists of the following major steps: 1) using a generic enzymatic rate equation to reduce the number of enzymatic parameters to a minimum set while still preserving their characteristics; 2) using a set of steady state fluxes and metabolite concentrations in the physiological range as the expected output steady state fluxes and metabolite concentrations for the kinetic model to restrict the parametric space of enzymatic reactions; 3) choosing enzyme constants K's and K'eqs optimized for reactions under physiological concentrations, if their experimental values are unknown; 4) for models which do not cover the entire metabolic network of the organisms, designing a dynamical exchange for the coupling between the metabolism represented in the model and the rest not included.
文摘Environmental contamination of food is a worldwide public health problem. Folate mediated one- carbon metabolism plays an important role in epigenetic regulation of gene expression and mutagenesis. Many contaminants in food cause cancer through epigenetic mechanisms and/or DNA instability i.e. default methylation of uracil to thymine, subsequent to the decrease of 5-methylte- trahydrofolate (5 mTHF) pool in the one-carbon metabolism network. Evaluating consequences of an exposure to food contaminants based on systems biology approaches is a promising alternative field of investigation. This report presents a dynamic mathematical modeling for the study of the alteration in the one-carbon metabolism network by environmental factors. It provides a model for predicting “the impact of arbitrary contaminants that can induce the 5 mTHF deficiency. The model allows for a given experimental condition, the analysis of DNA methylation activity and dumping methylation in the de novo pathway of DNA synthesis.
文摘In metabolic network modelling, the accuracy of kinetic parameters has become more important over the last two decades. Even a small perturbation in kinetic parameters may cause major changes in a model’s response. The focus of this study is to identify the kinetic parameters, using two distinct approaches: firstly, a One-at-a-Time Sensitivity Measure, performed on 185 kinetic parameters, which represent glycolysis, pentose phosphate, TCA cycle, gluconeogenesis, glycoxylate pathways, and acetate formation. Time profiles for sensitivity indices were calculated for each parameter. Seven kinetic parameters were found to be highly affected in the model response;secondly, particle swarm optimization was applied for kinetic parameter identification of a metabolic network model. The simulation results proved the effectiveness of the proposed method.
基金the National Natural Science Foundation of China(Nos.92051102,32200099,32225003 and 31970105)the Innovation Team Project of Universities in Guangdong Province(No.2020KCXTD023)the Shenzhen Science and Technology Program(JCYJ20200109105010363).
文摘Background:Synthetic microbial communities,with different strains brought together by balancing their nutrition and promoting their interactions,demonstrate great advantages for exploring complex performance of communities and for further biotechnology applications.The potential of such microbial communities has not been explored,due to our limited knowledge of the extremely complex microbial interactions that are involved in designing and controlling effective and stable communities.Results:Genome-scale metabolic models(GEM)have been demonstrated as an effective tool for predicting and guiding the investigation and design of microbial communities,since they can explicitly and efficiently predict the phenotype of organisms from their genotypic data and can be used to explore the molecular mechanisms of microbehabitats and microbe-microbe interactions.In this work,we reviewed two main categories of GEM-based approaches and three uses related to design of synthetic microbial communities:predicting multi-species interactions,exploring environmental impacts on microbial phenotypes,and optimizing community-level performance.Conclusions:Although at the infancy stage,GEM-based approaches exhibit an increasing scope of applications in designing synthetic microbial communities.Compared to other methods,especially the use of laboratory cultures,GEM-based approaches can greatly decrease the trial-and-error cost of various procedures for designing synthetic communities and improving their functionality,such as identifying community members,determining media composition,evaluating microbial interaction potential or selecting the best community configuration.Future efforts should be made to overcome the limitations of the approaches,ranging from quality control of GEM reconstructions to community-level modeling algorithms,so that more applications of GEMs in studying phenotypes of microbial communities can be expected.
基金Shenzhen Scienceand Technology Innovation Commission,Grant/Award Number:KCXFZ20201221173207022National Natural Science Foundation of China,key program,Next Generation Corynebacterium Glutamate Cell Factory System Creation Technology,Grant/Award Number:21938004Department of Chemical Engineering-i BHE special cooperation joint fund project,Grant/Award Number:DCE-iBHE-2023-1。
文摘Over the last 15 years,genome-scale metabolic models(GEMs)have been reconstructed for human and model animals,such as mouse and rat,to systematically understand metabolism,simulate multicellular or multi-tissue interplay,understand human diseases,and guide cell factory design for biopharmaceutical protein production.Here,we describe how metabolic networks can be represented using stoichiometric matrices and well-defined constraints for flux simulation.Then,we review the history of GEM development for quantitative understanding of Homo sapiens and other relevant animals,together with their applications.We describe how model develops from H.sapiens to other animals and from generic purpose to precise context-specific simulation.The progress of GEMs for animals greatly expand our systematic understanding of metabolism in human and related animals.We discuss the difficulties and present perspectives on the GEM development and the quest to integrate more biological processes and omics data for future research and translation.We truly hope that this review can inspire new models developed for other mammalian organisms and generate new algorithms for integrating big data to conduct more in-depth analysis to further make progress on human health and biopharmaceutical engineering.
基金the National Key Technology Research and Development Program of China(2018YFA0900300 and 2022YFA0911800)the National Natural Science Foundation of China(21978071 and U1932141)+3 种基金the Key Science and Technology Innovation Project of Hubei Province(2021BAD001)2022 Joint Projects between Chinese and CEEC’s Universities(202004)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang Province(2018R01014)the Innovation Base for Introducing Talents of Discipline of Hubei Province(2019BJH021)。
文摘High-quality genome-scale metabolic models(GEMs)could play critical roles on rational design of microbial cell factories in the classical Design-Build-Test-Learn cycle of synthetic biology studies.Despite of the constant establishment and update of GEMs for model microorganisms such as Escherichia coli and Saccharomyces cerevisiae,high-quality GEMs for non-model industrial microorganisms are still scarce.Zymomonas mobilis subsp.mobilis ZM4 is a non-model ethanologenic microorganism with many excellent industrial characteristics that has been developing as microbial cell factories for biochemical production.Although five GEMs of Z.mobilis have been constructed,these models are either generating ATP incorrectly,or lacking information of plasmid genes,or not providing standard format file.In this study,a high-quality GEM iZM516 of Z.mobilis ZM4 was constructed.The information from the improved genome annotation,literature,datasets of Biolog Phenotype Microarray studies,and recently updated Gene-Protein-Reaction information was combined for the curation of iZM516.Finally,516 genes,1389 reactions,1437 metabolites,and 3 cell compartments are included in iZM516,which also had the highest MEMOTE score of 91%among all published GEMs of Z.mobilis.Cell growth was then predicted by iZM516,which had 79.4%agreement with the experimental results of the substrate utilization.In addition,the potential endogenous succinate synthesis pathway of Z.mobilis ZM4 was proposed through simulation and analysis using iZM516.Furthermore,metabolic engineering strategies to produce succinate and 1,4-butanediol(1,4-BDO)were designed and then simulated under anaerobic condition using iZM516.The results indicated that 1.68 mol/mol succinate and 1.07 mol/mol 1,4-BDO can be achieved through combinational metabolic engineering strategies,which was comparable to that of the model species E.coli.Our study thus not only established a high-quality GEM iZM516 to help understand and design microbial cell factories for economic biochemical production using Z.mobilis as the chassis,but also provided guidance on building accurate GEMs for other non-model industrial microorganisms.
基金funded by the National Key Research and Development Program of China(2018YFA0900300,2020YFA0908301)the National Natural Science Foundation of China(32201188)+1 种基金the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(TSBICIP-CXRC-060,TSBICIP-PTJS-001,and TSBICIP-PTJS-013)the China Postdoctoral Science Foundation(2022M723341).
文摘Metabolic network models have become increasingly precise and accurate as the most widespread and practical digital representations of living cells.The prediction functions were significantly expanded by integrating cellular resources and abiotic constraints in recent years.However,if unreasonable modeling methods were adopted due to a lack of consideration of biological knowledge,the conflicts between stoichiometric and other constraints,such as thermodynamic feasibility and enzyme resource availability,would lead to distorted predictions.In this work,we investigated a prediction anomaly of EcoETM,a constraints-based metabolic network model,and introduced the idea of enzyme compartmentalization into the analysis process.Through rational combination of reactions,we avoid the false prediction of pathway feasibility caused by the unrealistic assumption of free intermediate metabolites.This allowed us to correct the pathway structures of L-serine and L-tryptophan.A specific analysis explains the application method of the EcoETM-like model and demonstrates its potential and value in correcting the prediction results in pathway structure by resolving the conflict between different constraints and incorporating the evolved roles of enzymes as reaction compartments.Notably,this work also reveals the trade-off between product yield and thermodynamic feasibility.Our work is of great value for the structural improvement of constraints-based models.
文摘Based on the gene-protein-reaction (GPR) model of S. cerevisiae_iND750 and the method of constraint-based analysis, we first calculated the metabolic flux distribution of S. cere-visiae_iND750. Then we calculated the deletion impact of 438 calculable genes, one by one, on the metabolic flux redistribution of S. cere-visiae_iND750. Next we analyzed the correlation between v (describing deletion impact of one gene) and d (connection degree of one gene) and the correlation between v and Vgene (flux sum controlled by one gene), and found that both of them were not of linear relation. Furthermore, we sought out 38 important genes that most greatly affected the metabolic flux distribution, and determined their functional subsystems. We also found that many of these key genes were related to many but not several subsystems. Because the in silico model of S. cere-visiae_iND750 has been tested by many ex-periments, thus is credible, we can conclude that the result we obtained has biological sig-nificance.
基金supported by the National key research and development program of China(Grant no.2020YFA0908303).
文摘Due to the increasing demand for microbially manufactured products in various industries,it has become important to find optimal designs for microbial cell factories by changing the direction of metabolic flow and its flux size by means of metabolic engineering such as knocking out competing pathways and introducing exogenous pathways to increase the yield of desired products.Recently,with the gradual cross-fertilization between computer science and bioinformatics fields,machine learning and intelligent optimization-based approaches have received much attention in Genome-scale metabolic network models(GSMMs)based on constrained optimization methods,and many high-quality related works have been published.Therefore,this paper focuses on the advances and applications of machine learning and intelligent optimization algorithms in metabolic engineering,with special emphasis on GSMMs.Specifically,the development history of GSMMs is first reviewed.Then,the analysis methods of GSMMs based on constraint optimization are presented.Next,this paper mainly reviews the development and application of machine learning and intelligent optimization algorithms in genome-scale metabolic models.In addition,the research gaps and future research potential in machine learning and intelligent optimization methods applied in GSMMs are discussed.
文摘The increasing antimicrobial resistance has seriously threatened human health worldwide over the last three decades.This severe medical crisis and the dwindling antibiotic discovery pipeline require the development of novel antimicrobial treatments to combat life-threatening infections caused by multidrug-resistant micro-bial pathogens.However,the detailed mechanisms of action,resistance,and toxicity of many antimicrobials remain uncertain,significantly hampering the development of novel antimicrobials.Genome-scale metabolic model(GSMM)has been increasingly employed to investigate microbial metabolism.In this review,we discuss the latest progress of GSMM in antimicrobial pharmacology,particularly in elucidating the complex interplays of multiple metabolic pathways involved in antimicrobial activity,resistance,and toxicity.We also highlight the emerging areas of GSMM applications in modeling non-metabolic cellular activities(e.g.,gene expression),identi-fication of potential drug targets,and integration with machine learning and pharmacokinetic/pharmacodynamic modeling.Overall,GSMM has significant potential in elucidating the critical role of metabolic changes in antimi-crobial pharmacology,providing mechanistic insights that will guide the optimization of dosing regimens for the treatment of antimicrobial-resistant infections.
基金the National Natural Science Foundation of China(82071784)the Fundamental Research Funds for the Central Universities(2042022dx0003 and PTPP2023002)+1 种基金the Key Research and Development Project of Hubei Province(2020BCA069)the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(ZNJC202007).
文摘Background:Human immunodeficiency virus type 1(HIV-1)remains a persistent global health challenge.Therefore,a continuous exploration of novel therapeutic strategies is essential.A comprehensive understanding of how HIV-1 utilizes the cellular metabolism machinery for replication can provide insights into new therapeutic approaches.Methods:In this study,we performed a flux balance analysis using a genome-scale metabolic model(GEM)integrated with an HIV-1 viral biomass objective function to identify potential targets for anti–HIV-1 interventions.We generated a GEM by integrating an HIV-1 production reaction into CD4+T cells and optimized for both host and virus optimal states as objective functions to depict metabolic profiles of cells in the status for optimal host biomass maintenance or for optimal HIV-1 virion production.Differential analysis was used to predict biochemical reactions altered optimal for HIV-1 production.In addition,we conducted in silico simulations involving gene and reaction knock-outs to identify potential anti–HIV-1 targets,which were subsequently validated by human phytohemagglutinin(PHA)blasts infected with HIV-1.Results:Differential analysis identified several altered biochemical reactions,including increased lysine uptake and oxidative phosphorylation(OXPHOS)activities in the virus optima compared with the host optima.In silico gene and reaction knock-out simulations revealed de novo pyrimidine synthesis,and OXPHOS could serve as potential anti–HIV-1 metabolic targets.In vitro assay confirmed that targeting OXPHOS using metformin could suppress the replication of HIV-1 by 56.6%(385.4±67.5 pg/mL in the metformintreated group vs.888.4±32.3 pg/mL in the control group,P<0.001).Conclusion:Our integrated host-virus genome-scale metabolic study provides insights on potential targets(OXPHOS)for anti-HIV therapies.
基金This work was financially supported by the Key Research and Development Program of China(2020YFA0908300)the National Natural Science Foundation of China(31870069 and 32021005)the Fundamental Research Funds for the Central Universities(USRP52019A,JUSRP121010,and JUSRP221013).
文摘Genome-scale metabolic models(GEMs)have been widely used to design cell factories in silico.However,initial flux balance analysis only considers stoichiometry and reaction direction constraints,so it cannot accurately describe the distribution of metabolic flux under the control of various regulatory mechanisms.In the recent years,by introducing enzymology,thermodynamics,and other multiomics-based constraints into GEMs,the metabolic state of cells under different conditions was more accurately simulated and a series of algorithms have been presented for microbial phenotypic analysis.Herein,the development of multiconstrained GEMs was reviewed by taking the constraints of enzyme kinetics,thermodynamics,and transcriptional regulatory mechanisms as examples.This review focused on introducing and summarizing GEMs application tools and cases in cell factory design.The challenges and prospects of GEMs development were also discussed.
文摘Metabolism is regulated at multiple levels in response to the changes of internal or external conditions. Transcriptional regulation plays an important role in regulating many metabolic reactions by altering the concentrations of metabolic enzymes. Thus, integration of the transcriptional regulatory information is necessary to improve the accuracy and predictive ability of metabolic models. Here we review the strategies for the reconstruction of a transcriptional regulatory network (TRN) for yeast and the integration of such a reconstruction into a flux balance analysis-based metabolic model. While many large-scale TRN reconstructions have been reported for yeast, these reconstructions still need to be improved regarding the functionality and dynamic property of the regulatory interactions. In addition, mathematical modeling approaches need to be further developed to efficiently integrate transcriptional regulatory interactions to genome-scale metabolic models in a quantitative manner.
基金the National Key Research and Development Program (No. 2016YFA0502304)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase, No.U150l501)the National Natural Science Foundation of China (No. 21173076).
文摘Backgrounds Arachidonic acid (AA) metabolic network is activated in the most inflammatory related diseases, and small-molecular drugs targeting AA network are increasingly available. However, side effects of above mentioned drugs have always been the biggest obstacle.什)-2-( 1 -hydroxy 1-4-oxocycIohexyl) ethyl caffeate (HOEC), a natural product acted as an inhibitor of 5-Iipoxygenase (5-LOX) and 15-LOX in vitro^ exhibited weaker therapeutic effect in high dose than that in low dose to collagen induced arthritis (CIA) rats. In this study, we tried to elucidate the potential regulatory mechanism by using quantitative pharmacology. Methods: First, we generated an experimental data set by monitoring the dynamics of AA metabolites, concentration in A23187 stimulated and different doses of HOEC co-incubated RAW264.7. Then we constructed a dynamic model of A23187-stimulated AA metabolic model to evaluate how a model-based simulation of AA metabolic data assists to find the most suitable treatment dose by predicting the pharmacodynamics of HOEC? Results: Compared to the experimental data, the model could simulate the inhibitory effect of HOEC on 5-LOX and 15-LOX, and reproduced the increase of the metabolic flux in the cyclooxygenase (COX) pathway. However, a concomitant, early-stage of stimulation-related decrease of prostaglandins (PGs) production in HOEC incubated RAW264.7 cells was not simulated in the model. Conclusion-. Using the model, we predict that higher dose of HOEC disrupts the flux balance in COX and LOX of the AA network, and increased COX flux can interfere the curative effects of LOX inhibitor on resolution of inflammation which is crucial for the efficient and safe drug design.
文摘Stoichiometry-based analyses of meta- bolic networks have aroused significant interest of systems biology researchers in recent years. It is necessary to develop a more convenient modeling platform on which users can reconstruct their network models using completely graphical operations, and explore them with powerful analyzing modules to get a better understanding of the properties of metabolic systems. Herein, an in silico platform, FluxExplorer, for metabolic modeling and analyses based on stoichiometry has been developed as a publicly available tool for systems biology research. This platform integrates various analytic approaches, in- cluding flux balance analysis, minimization of meta- bolic adjustment, extreme pathways analysis, shadow prices analysis, and singular value decom- position, providing a thorough characterization of the metabolic system. Using a graphic modeling process, metabolic networks can be reconstructed and modi- fied intuitively and conveniently. The inconsistencies of a model with respect to the FBA principles can be proved automatically. In addition, this platform sup- ports systems biology markup language (SBML). FluxExplorer has been applied to rebuild a metabolic network in mammalian mitochondria, producing meaningful results. Generally, it is a powerful and very convenient tool for metabolic network modeling and analysis.