[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was ...[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.展开更多
Sorghum [<i><span style="font-family:Verdana;">Sorghum bicolor</span></i><span style="font-family:Verdana;"> (L.) Moench] is a high-yielding, nutrient-use efficient, a...Sorghum [<i><span style="font-family:Verdana;">Sorghum bicolor</span></i><span style="font-family:Verdana;"> (L.) Moench] is a high-yielding, nutrient-use efficient, and drought tolerant crop that can be cultivated on over 80 per cent of the world’s agricultural land. However, a number of biotic and abiotic factors are limiting grain yield increase. Diseases (leaf and grain) are considered as one of the major biotic factors hindering sorghum productivity in the highland and intermediate altitude sorghum growing areas of Ethiopia. In addition, the yield performance of crop varieties is highly influenced by genotype × environment (G × E) interaction which is the major focus of researchers while generating improved varieties. In Ethiopia, high yielding and stable varieties that withstand biotic stress in the highland areas are limited. In line with this, the yield performance of 21 sorghum genotypes and one standard check were evaluated across 14 environments with the objectives of estimating magnitude G </span><span style="font-family:Verdana;">× E interaction for grain yield and to identify high yielder and stable genotypes across environments. The experiment was laid out using Randomized Complete Block Design with three replications in all environments. The combined analysis of variance across environments revealed highly significant differences among environments, genotypes and G × E interactions of grain yield suggesting further analysis of the G × E interaction. The results of the combined AMMI analysis of variance indicated that the total variation in grain yield was attributed to environments effects 71.21%, genotypes effects 4.52% and G × E interactions effects 24.27% indicating the major sources of variation. Genotypes 2006AN7010 and 2006AN7011 were high yielder and they were stable across environments and one variety has been released for commercial production and can be used as parental lines for genetic improvement in the sorghum improvement program. In general, this research study revealed the importance of evaluating sorghum genotypes for their yield and stability across diverse highland areas of Ethiopia before releasing for commercial production.</span>展开更多
基金Supported by the Guangdong Technological Program (2009B02001002)the Special Funds of National Agricultural Department for Commonweal Trade Research (nyhyzx07-019)the Earmarked Fund for Modern Agro-industry Technology Research System~~
文摘[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.
文摘Sorghum [<i><span style="font-family:Verdana;">Sorghum bicolor</span></i><span style="font-family:Verdana;"> (L.) Moench] is a high-yielding, nutrient-use efficient, and drought tolerant crop that can be cultivated on over 80 per cent of the world’s agricultural land. However, a number of biotic and abiotic factors are limiting grain yield increase. Diseases (leaf and grain) are considered as one of the major biotic factors hindering sorghum productivity in the highland and intermediate altitude sorghum growing areas of Ethiopia. In addition, the yield performance of crop varieties is highly influenced by genotype × environment (G × E) interaction which is the major focus of researchers while generating improved varieties. In Ethiopia, high yielding and stable varieties that withstand biotic stress in the highland areas are limited. In line with this, the yield performance of 21 sorghum genotypes and one standard check were evaluated across 14 environments with the objectives of estimating magnitude G </span><span style="font-family:Verdana;">× E interaction for grain yield and to identify high yielder and stable genotypes across environments. The experiment was laid out using Randomized Complete Block Design with three replications in all environments. The combined analysis of variance across environments revealed highly significant differences among environments, genotypes and G × E interactions of grain yield suggesting further analysis of the G × E interaction. The results of the combined AMMI analysis of variance indicated that the total variation in grain yield was attributed to environments effects 71.21%, genotypes effects 4.52% and G × E interactions effects 24.27% indicating the major sources of variation. Genotypes 2006AN7010 and 2006AN7011 were high yielder and they were stable across environments and one variety has been released for commercial production and can be used as parental lines for genetic improvement in the sorghum improvement program. In general, this research study revealed the importance of evaluating sorghum genotypes for their yield and stability across diverse highland areas of Ethiopia before releasing for commercial production.</span>