Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight s...Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.展开更多
It is of both the theoretical and practical importance to reduce the storage andCPU time of moment methods by utilizing the geometrical and physical features of the scatterer.An unified approach based on the group the...It is of both the theoretical and practical importance to reduce the storage andCPU time of moment methods by utilizing the geometrical and physical features of the scatterer.An unified approach based on the group theory is presented to deal with the EM scattering fromsymmetric and anti-symmetric structures.展开更多
With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games an...With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.展开更多
This paper is mainly to discuss cooperative games on convex geometries with a coalition structure, which can be seen as an extension of cooperative games with a coalition structure. For this kind of games, the coopera...This paper is mainly to discuss cooperative games on convex geometries with a coalition structure, which can be seen as an extension of cooperative games with a coalition structure. For this kind of games, the cooperation among unions and within each union will be the convex sets, i.e., the feasible subsets of the coalition structure and that of each union belong to a convex geometry, respectively. The explicit form of the generalized Owen value for this kind of games is given, which can be seen as an extension of the Owen value. Eklrthermore, two special cases of this kind of games are researched. The corresponding Davoff indices are also stHdied. Fin~.llv ~n ilhl^r~'i, ~r^l~ to ~展开更多
基金supported by the National Natural Science Foundation of China(Grants Nos.51978150 and 52050410334)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grants No.SJCX23_0069)the Fundamental Research Funds for the Central Universities.
文摘Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness.
文摘It is of both the theoretical and practical importance to reduce the storage andCPU time of moment methods by utilizing the geometrical and physical features of the scatterer.An unified approach based on the group theory is presented to deal with the EM scattering fromsymmetric and anti-symmetric structures.
基金supported by the National Natural Science Foundation of China under Grant Nos.71201089,71201110,71271217,and 71271029the Natural Science Foundation Youth Project of Shandong Province,China under Grant No.ZR2012GQ005+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20111101110036the Program for New Century Excellent Talents in University of China under Grant No.NCET-12-0541
文摘With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.
基金supported by the National Natural Science Foundation of China under Grant Nos.71201089, 71271217,and 71071018the Natural Science Foundation of Shandong Province,China,under Grant No. ZR2012GQ005
文摘This paper is mainly to discuss cooperative games on convex geometries with a coalition structure, which can be seen as an extension of cooperative games with a coalition structure. For this kind of games, the cooperation among unions and within each union will be the convex sets, i.e., the feasible subsets of the coalition structure and that of each union belong to a convex geometry, respectively. The explicit form of the generalized Owen value for this kind of games is given, which can be seen as an extension of the Owen value. Eklrthermore, two special cases of this kind of games are researched. The corresponding Davoff indices are also stHdied. Fin~.llv ~n ilhl^r~'i, ~r^l~ to ~